Skip to main content

Numerical Simulation of the Electromechanical Activity of the Heart

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Abstract

We present numerical results obtained with a three-dimensional electromechanical model of the heart with a complete realistic anatomy. The electrical activity of the heart-torso domain is described by the bidomain equations in the heart and a Laplace equation in the torso. The mechanical model is based on a chemically-controlled contraction law of the myofibres integrated in a 3D continuum mechanics description accounting for large displacements and strains, and the main cardiovascular blood compartments are represented by simplified lumped models. We considered a normal case and a pathological condition and the medical indicators resulting from the simulations show physiological values, both for mechanical and electrical quantities of interest, in particular pressures, volumes and ECGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astorino, M., Gerbeau, J.-F., Pantz, O., Traoré, K.: Fluid-structure interaction and multi-body contact. Application to aortic valves. Comp. Meth. Appl. Mech. Engng., doi:10.1016/j.cma.2008.09.012

    Google Scholar 

  2. Baerentzen, J., Aanaes, H.: Signed distance computation using the angle weighted pseudo-normal. IEEE Trans. Visual. Comput. Graph. 11(3), 243–253 (2005)

    Article  Google Scholar 

  3. Bestel, J., Clément, F., Sorine, M.: A biomechanical model of muscle contraction. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208. Springer, Heidelberg (2001)

    Google Scholar 

  4. Boulakia, M., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Mathematical modelling of electrocardiograms: a numerical study (submitted)

    Google Scholar 

  5. Boulakia, M., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Towards the numerical simulation of electrocardiograms. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 240–249. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Zemzemi, N.: A 3D model for the electromechanical activity of the heart (in preparation, 2009)

    Google Scholar 

  7. Ciarlet, P.G.: Mathematical Elasticity. In: Three-Dimensional Elasticity. Studies in Mathematics and its Applications, vol. I. North-Holland, Amsterdam (1988)

    Google Scholar 

  8. Frey, P.: Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, Inria, Rocquencourt, France (November 2001)

    Google Scholar 

  9. George, P.L., Hecht, F., Saltel, E.: Fully automatic mesh generator for 3D domains of any shape. Impact of Comp. in Sci. ans Eng. 2, 187–218 (1990)

    Article  MATH  Google Scholar 

  10. Hill, A.V.: The heat of shortening and the dynamic constants in muscle. Proc. Roy. Soc. London (B) 126, 136–195 (1938)

    Article  Google Scholar 

  11. Huxley, A.F.: Muscle structure and theories of contraction. In: Progress in Biophysics and Biological Chemistry, vol. 7, pp. 255–318. Pergamon Press, Oxford (1957)

    Google Scholar 

  12. Kerckhoffs, R.C.P., Healy, S.N., Usyk, T.P., McCulloch, A.D.: Computational methods for cardiac electromechanics. Proc. IEEE 94(4), 769–783 (2006)

    Article  Google Scholar 

  13. Lab, M.J., Taggart, P., Sachs, F.: Mechano-electric feedback. Cardiovasc. Res. 32, 1–2 (1996)

    Article  Google Scholar 

  14. Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 3. Elsevier, Amsterdam (1994)

    Google Scholar 

  15. MacDonald, D.A.: Blood Flow in Arteries. Edward Harold Press (1974)

    Google Scholar 

  16. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. (65), 767–793 (2003)

    Google Scholar 

  17. Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically modelling the electrical activity of the heart. From cell to body surface and back again. World Scientific, Singapore (2005)

    Google Scholar 

  18. Sachse, F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  19. Sachse, F.B., Frech, R., Werner, C.D., Dossel, O.: A model based approach to assignment of myocardial fibre orientation. Computers in Cardiology, 145–148 (1999)

    Google Scholar 

  20. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Computers & Structures 84, 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  21. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  22. Tung, L.: A bi-domain model for describing ischemic myocardial D–C potentials. PhD thesis, MIT (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chapelle, D., Fernández, M.A., Gerbeau, JF., Moireau, P., Sainte-Marie, J., Zemzemi, N. (2009). Numerical Simulation of the Electromechanical Activity of the Heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics