Advertisement

Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation

  • Phani Chinchapatnam
  • Kawal Rhode
  • Matthew Ginks
  • Prasanth Nair
  • Reza Razavi
  • Simon Arridge
  • Maxime Sermesant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5528)

Abstract

In this paper, an adaptive meshless method is described for solving the modified FitzHugh Nagumo equations on a set of nodes directly imported from the voxels of the medical images. The non-trivial task of constructing suitable meshes for complex geometries to solve the reaction-diffusion equations is circumvented by a meshfree implementation. The spatial derivatives arising in the reaction diffusion system are estimated using the Lagrangian form of scattered node radial basis function interpolant. Normal cardiac activation phenomena is fast, with a very steep upstroke and localised as compared to the size of the computational domain. To accurately capture this phenomena, a space adaptive method is presented where extra nodes are placed near the region of the activation front. The performance of the adaptive method is investigated first for synthetic geometry and then applied to a real-life geometry obtained from magnetic resonance imaging. Numerical results suggest that the presented method is capable of predicting realistic electrophysiology simulation effectively.

Keywords

Radial Basis Function Meshless Method Node Evolution Element Free Galerkin Radial Basis Function Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunter, P.J., Pullan, A.J., Smaill, B.H.: Modelling total heart function. Annu. Rev. Biomed. Eng. 5, 147–177 (2003)CrossRefGoogle Scholar
  2. 2.
    Winslow, R.L., Scollan, D.F., Holmes, A., Yung, C.K., Zhang, J., Jafri, M.A.: Electrophysiological modelling of cardiac ventricular function: from cell to organ. Annu. Rev. Biomed. Eng. 2, 119–155 (2000)CrossRefGoogle Scholar
  3. 3.
    Kerckhoffs, R., Narayan, S., Omens, J., Mulligan, L., McCulloch, A.: Computational modeling for bedside application. Heart Failure Clin. 4, 371–378 (2008)CrossRefGoogle Scholar
  4. 4.
    Sermesant, M., Peyrat, J.M., Chinchapatnam, P., Billet, F., Mansi, T., Rhode, K., Delingette, H., Razavi, R., Ayache, N.: Towards patient-specific myocardial models of the heart. Heart Failure Clin. 4, 289–301 (2008)CrossRefGoogle Scholar
  5. 5.
    Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRefGoogle Scholar
  6. 6.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  7. 7.
    Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitions and Fractals 7(3), 293–301 (1996)CrossRefGoogle Scholar
  8. 8.
    Garny, A., Noble, D., Kohl, P.: Dimensionality in cardiac modelling. Prog. Biophysics. Mol. Biol. 87(1), 47–66 (2005)CrossRefGoogle Scholar
  9. 9.
    Fasshauer, G.: Meshfree Methods. In: Handbook of Theoretical and Computational Nanotechnology, pp. 33–97. American Scientific Publishers (2006)Google Scholar
  10. 10.
    Zhang, H., Shi, P.: A meshfree method for solving cardiac electrical propagation. In: IEEE Eng. in Med. and Biol. 27th Annual Conference, pp. 349–352 (2005)Google Scholar
  11. 11.
    Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Phani Chinchapatnam
    • 1
    • 2
  • Kawal Rhode
    • 2
  • Matthew Ginks
    • 2
  • Prasanth Nair
    • 3
  • Reza Razavi
    • 2
  • Simon Arridge
    • 1
  • Maxime Sermesant
    • 2
    • 4
  1. 1.Centre for Medical Image ComputingUniversity College LondonUK
  2. 2.Division of Imaging SciencesKing’s College LondonUK
  3. 3.Computational Engineering and Design GroupUniversity of SouthamptonUK
  4. 4.Asclepios ProjectINRIA Sophia-AntipolisFrance

Personalised recommendations