Lumen Border Detection of Intravascular Ultrasound via Denoising of Directional Wavelet Representations

  • Amin Katouzian
  • Elsa Angelini
  • Auranuch Lorsakul
  • Bernhard Sturm
  • Andrew F. Laine
Conference paper

DOI: 10.1007/978-3-642-01932-6_12

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5528)
Cite this paper as:
Katouzian A., Angelini E., Lorsakul A., Sturm B., Laine A.F. (2009) Lumen Border Detection of Intravascular Ultrasound via Denoising of Directional Wavelet Representations. In: Ayache N., Delingette H., Sermesant M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg

Abstract

In this paper, intravascular ultrasound (IVUS) grayscale images, acquired with a single-element mechanically rotating transducer, are processed with wavelet denoising and region-based segmentation to extract various layers of lumen contours and plaques. First, IVUS volumetric data is expanded on complex exponential multi-resolution basis functions, also known as Brushlets, which are well localized in the time and frequency domains. Brushlet denoising has previously demonstrated a great aptitude for denoising ultrasound data and removal of blood speckle. A region-based segmentation framework is then applied for detection of lumen border layers, which remains a challenging problem in IVUS image analysis for images acquired with a single element, mechanically rotating 45 MHz transducer. We evaluated a hard thresholding operator for Brushlet denoising, and compared segmentation results to manually traced lumen borders. We observed good agreement and suggest that the proposed algorithm has a potential to be used as a reliable pre-processing step for accurate lumen border detection.

Keywords

Brushlet Intravascular Ultrasound (IVUS) Denoising Border Detection Lumen Thresholding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amin Katouzian
    • 3
  • Elsa Angelini
    • 1
  • Auranuch Lorsakul
    • 3
  • Bernhard Sturm
    • 2
  • Andrew F. Laine
    • 3
    • 4
  1. 1.Institut TELECOM, TELECOM ParisTech, CNRS LTCIParisFrance
  2. 2.Volcano CorporationRancho CordovaUSA
  3. 3.Biomedical EngineeringColumbia UniversityNew YorkUSA
  4. 4.Radiology DepartmentsColumbia UniversityNew YorkUSA

Personalised recommendations