Modularity in Databases

  • Christine Parent
  • Stefano Spaccapietra
  • Esteban Zimányi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5445)


Modularization can be sought for as a technique to provide context-dependent perspectives over a given shared information repository. This chapter presents an approach to database modularization where the modules represent application-specific perspectives over the shared database. The approach is meant to support the creation/definition of the modules as part of the conceptual schema definition process, that is to say the modules and the database they are a subset of are simultaneously defined. This is similar to Cyc’s approach to ontological microtheories definition. The chapter develops both intuitive and formal definition of the proposed approach. It also shows the basics of how the modules are used by user transactions and of how the overall multiperception database can be implemented on a commercial database management system.


Geographic Information System Object Type Relationship Type Cardinality Constraint Land Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Jadir, L., Parent, C., Spaccapietra, S.: OntoMind: Reasoning with Large DL Ontologies Stored in Relational Databases (2009) (in preparation)Google Scholar
  2. 2.
    Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems. Annals of Mathematics and Artificial Intelligence 50(1–2), 5–38 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bouquet, P., Giunchiglia, F., van Harmelen, A., Serafini, L., Stuckenschmidt, H.: Contextualizing ontologies. Journal of Web Semantics 1(4), 325–343 (2004)CrossRefGoogle Scholar
  4. 4.
    Grau, B.C., Parsia, B., Sirin, E.: Ontology Integration Using \(\mathcal{E}\)-connections. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 293–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems. In: Representation and Inference in the Cyc Project. Addison-Wesley, Reading (1989)Google Scholar
  7. 7.
    Mylopoulos, J., Motschnig-Pitrig, R.: Partitioning information bases with contexts. In: Proceedings of the 3rd International Conference On Cooperative Information Systems, CoopIs 1995, pp. 44–54 (1995)Google Scholar
  8. 8.
    Motschnig-Pitrig, R.: A generic framework for modelling contexts and its applications. Data and Knowledge Engineering 32(2), 145–180 (2000)CrossRefGoogle Scholar
  9. 9.
    Open Geospatial Consortium Inc. OpenGIS Implementation Specification for Geographic information – Simple feature access – Part 2: SQL option OGC 06-104r3, Version 1.2.0 (2006)Google Scholar
  10. 10.
    Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual Modeling for Traditional and Spatio-Temporal Applications: The MADS Approach. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  11. 11.
    Parent, C., Spaccapietra, S., Zimányi, E.: The MurMur Project: Modeling and Querying Multi-Represented Spatio-Temporal Databases. Information Systems 31(8), 733–769 (2006)CrossRefGoogle Scholar
  12. 12.
    Spaccapietra, S., Parent, C., Zimany, E.: Spatio-temporal and multirepresentation modeling for supporting active conceptual modeling of learning, ACM-L. In: Chen, P.P., Wong, L.Y. (eds.) ACM-L 2006. LNCS, vol. 4512, pp. 194–205. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christine Parent
    • 1
  • Stefano Spaccapietra
    • 2
  • Esteban Zimányi
    • 3
  1. 1.HEC ISIUniversité de LausanneSwitzerland
  2. 2.Database LaboratoryEcole Polytechnique Fédérale de LausanneSwitzerland
  3. 3.Department of Computer and Decision Engineering (CoDE)Université Libre de BruxellesBelgium

Personalised recommendations