Declarative versus Imperative Process Modeling Languages: The Issue of Understandability

  • Dirk Fahland
  • Daniel Lübke
  • Jan Mendling
  • Hajo Reijers
  • Barbara Weber
  • Matthias Weidlich
  • Stefan Zugal
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 29)

Abstract

Advantages and shortcomings of different process modeling languages are heavily debated, both in academia and industry, but little evidence is presented to support judgements. With this paper we aim to contribute to a more rigorous, theoretical discussion of the topic by drawing a link to well-established research on program comprehension. In particular, we focus on imperative and declarative techniques of modeling a process. Cognitive research has demonstrated that imperative programs deliver sequential information much better while declarative programs offer clear insight into circumstantial information. In this paper we show that in principle this argument can be transferred to respective features of process modeling languages. Our contribution is a pair of propositions that are routed in the cognitive dimensions framework. In future research, we aim to challenge these propositions by an experiment.

Keywords

Process model understanding declarative versus imperative modeling cognitive dimensions framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Recker, J., Dreiling, A.: Does it matter which process modelling language we teach or use? an experimental study on understanding process modelling languages without formal education. In: Toleman, M., Cater-Steel, A., Roberts, D. (eds.) 18th Australasian Conference on Information Systems, pp. 356–366 (2007)Google Scholar
  3. 3.
    Mendling, J., Reijers, H., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Gilmore, D.J., Green, T.R.G.: Comprehension and recall of miniature programs. International Journal of Man-Machine Studies 21(1), 31–48 (1984)CrossRefGoogle Scholar
  5. 5.
    Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification. IBM Systems Journal 42(3), 428–445 (2004)CrossRefGoogle Scholar
  6. 6.
    Owen, M., Raj, J.: BPMN and Business Process Management: Introduction to the New Business Process Modeling Standard. Technical report, Popkin (2003), http://whitepaper.techweb.com/cmptechweb/search/viewabstract/71
  7. 7.
    Smith, H., Fingar, P.: Business Process Management: The Third Wave (2003)Google Scholar
  8. 8.
    Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to Users. PhD thesis, Eindhoven University of Technology (2008)Google Scholar
  9. 9.
    Boley, H.: Declarative and Procedural Paradigms - Do They Really Compete? In: Boley, H., Richter, M.M. (eds.) PDK 1991. LNCS, vol. 567, pp. 383–385. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Korhonen, J.: Evolution of agile enterprise architecture (April 2006), http://blog.jannekorhonen.fi/?p=11 (retrieved February 10, 2009)
  11. 11.
    Goldberg, L.: Seven deadly sins of business rules (September 2007), http://www.bpminstitute.org/articles/article/article/seven-deadly-sins.html (retrieved February 10, 2009)
  12. 12.
    McGregor, M.: Procedure vs. process (January 2009), http://www.it-director.com/blogs/Mark_McGregor/2009/1/procedure_vs_process.html (retrieved February 10, 2009)
  13. 13.
    Vanderfeesten, I., Reijers, H., van der Aalst, W.: Evaluating workflow process designs using cohesion and coupling metrics. Comp. in Ind. 59(5) (2008)Google Scholar
  14. 14.
    Guceglioglu, A., Demirors, O.: Using Software Quality Characteristics to Measure Business Process Quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Felleisen, M.: On the Expressive Power of Programming Languages. Science of Computer Programming 17(1-3), 35–75 (1991)CrossRefGoogle Scholar
  16. 16.
    Prechelt, L.: An Empirical Comparison of Seven Programming Languages. Computer, 23–29 (2000)Google Scholar
  17. 17.
    Dijkstra, E.: Letters to the editor: go to statement considered harmful. Communications of the ACM 11(3), 147–148 (1968)CrossRefGoogle Scholar
  18. 18.
    Glinert, E.: Nontextual programming environments. In: Visual Programming Systems, pp. 144–230. Prentice-Hall, Englewood Cliffs (1990)Google Scholar
  19. 19.
    Wiedenbeck, S., Ramalingam, V., Sarasamma, S., Corritore, C.: A comparison of the comprehension of object-oriented and procedural programs by novice programmers. Interacting with Computers 11(3), 255–282 (1999)CrossRefGoogle Scholar
  20. 20.
    Meyer, R.: Comprehension as affected by the structure of the problem representation. Memory & Cognition 4(3), 249–255 (1976)CrossRefGoogle Scholar
  21. 21.
    Shneiderman, B., Mayer, R.: Syntactic/semantic interactions in programmer behavior: A model and experimental results. International Journal of Parallel Programming 8(3), 219–238 (1979)Google Scholar
  22. 22.
    Fodor, J., Bever, T., Garrett, M.: The Psychology of Language: An Introduction to Psycholinguistics and Generative Grammar. McGraw-Hill Companies, New York (1974)Google Scholar
  23. 23.
    McKeithen, K., Reitman, J., Rueter, H., Hirtle, S.: Knowledge organization and skill differences in computer programmers. Cogn. Psych. 13(3), 307–325 (1981)CrossRefGoogle Scholar
  24. 24.
    Adelson, B.: Problem solving and the development of abstract categories in programming languages. Memory & Cognition 9(4), 422–433 (1981)CrossRefGoogle Scholar
  25. 25.
    Green, T.: Conditional program statements and their comprehensibility to professional programmers. Journal of Occupational Psychology 50, 93–109 (1977)CrossRefGoogle Scholar
  26. 26.
    Green, T.: Ifs and thens: Is nesting just for the birds? Software Focus 10(5) (1980)Google Scholar
  27. 27.
    Gilmore, D., Green, T.: Comprehension and recall of miniature programs. International Journal of Man-Machine Studies 21(1), 31–48 (1984)CrossRefGoogle Scholar
  28. 28.
    Green, T.: Cognitive dimensions of notations. In: Sutcliffe, A., Macaulay, L. (eds.) People and Computers V, Proceedings, pp. 443–460 (1989)Google Scholar
  29. 29.
    Green, T., Petre, M.: Usability Analysis of Visual Programming Environments: A Cognitive Dimensions Framework. J. Vis. Lang. Computing 7(2), 131–174 (1996)CrossRefGoogle Scholar
  30. 30.
    Blackwell, A.: Ten years of cognitive dimensions in visual languages and computing. J. Vis. Lang. Computing 17(4), 285–287 (2006)CrossRefGoogle Scholar
  31. 31.
    Vanderfeesten, I., Reijers, H., Mendling, J., Aalst, W., Cardoso, J.: On a Quest for Good Process Models: The Cross-Connectivity Metric. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Lloyd, J.: Practical advantages of declarative programming. In: Joint Conference on Declarative Programming, GULP-PRODE 1994 (1994)Google Scholar
  33. 33.
    Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (1979)CrossRefGoogle Scholar
  34. 34.
    Roy, P.V., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. MIT Press, Cambridge (2004)Google Scholar
  35. 35.
    Petri, C.A.: Concepts of net theory. In: Mathematical Foundations of Computer Science: Proc. of Symposium and Summer School, High Tatras, September 3-8, pp. 137–146. Math. Inst. of the Slovak Acad. of Sciences (1973)Google Scholar
  36. 36.
    Holt, A.W.: A Mathematical Model of Continuous Discrete Behavior. Massachusettes Computer Associates, Inc. (November 1980)Google Scholar
  37. 37.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for the verification of temporal properties. Formal Methods in System Design 1(2/3), 275–288 (1992)CrossRefGoogle Scholar
  39. 39.
    Jensen, K.: Coloured Petri Nets. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  40. 40.
    Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Form. Methods Syst. Des. 19(1), 45–80 (2001)CrossRefGoogle Scholar
  41. 41.
    Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and Validation in Flexible Workflows. Information Systems 30(5), 349–378 (2005)CrossRefGoogle Scholar
  42. 42.
    Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–923 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dirk Fahland
    • 1
  • Daniel Lübke
    • 2
  • Jan Mendling
    • 1
  • Hajo Reijers
    • 3
  • Barbara Weber
    • 4
  • Matthias Weidlich
    • 5
  • Stefan Zugal
    • 4
  1. 1.Humboldt-Universität zu BerlinGermany
  2. 2.Leibniz Universität HannoverGermany
  3. 3.Eindhoven University of TechnologyThe Netherlands
  4. 4.University of InnsbruckAustria
  5. 5.Hasso-Plattner-InstituteUniversity of PotsdamGermany

Personalised recommendations