Listeria as an Enteroinvasive Gastrointestinal Pathogen

Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 337)

Abstract

The bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Listeria spp. are isolated from a diversity of environmental sources, including soil, water, effluents, a large variety of foods, and the feces of humans and animals. Recent outbreaks demonstrated that L. monocytogenes can cause gastroenteritis in otherwise healthy individuals and more severe invasive disease in immunocompromised patients. Common symptoms include fever, watery diarrhea, nausea, headache, and pains in joints and muscles. The intestinal tract is the major portal of entry for L. monocytogenes, whereby strains penetrate the mucosal tissue either directly, via invasion of enterocytes, or indirectly, via active penetration of the Peyer's patches. Studies have revealed the strategy taken by the bacteria to overcome changes in oxygen tension, osmolarity, acidity, and the sterilizing effects of bile or antimicrobial peptides to adapt to conditions in the gut. In addition, L. monocytogenes has evolved species-specific strategies for intestinal entry by exploiting the interaction between the internalin protein and its receptor E-cadherin, or inducing diarrhea and an inflammatory response via the activity of its hemolytic toxin, listeriolysin. The ability of these bacteria to survive in bile-rich environments, and to induce depletion of sentinel cells such as Paneth cells that monitor the luminal burden of commensal bacteria, suggest strategies that have evolved to promote intestinal survival. Preexisting gastrointestinal disease may be a risk factor for infection of the gastrointestinal tract with L. monocytogenes. Currently, there is enough evidence to warrant consideration of L. monocytogenes as a possible etiology in outbreaks of febrile gastroenteritis, and for further studies to examine the genetic structure of Listeria strains that have a propensity to cause gastrointestinal versus systemic infections.

References

  1. Abrams GD, Bishop JE (1967) Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med 126:301–304PubMedGoogle Scholar
  2. Allerberger F, Langer B, Hirsch O et al (1989) Listeria monocytogenes cholecystitis. Z Gastroenterol 27:145–147PubMedGoogle Scholar
  3. Aureli P, Fiorucci GC, Caroli D et al (2000) An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med 342:1236–1241PubMedCrossRefGoogle Scholar
  4. Bakardjiev AI, Stacy BA, Portnoy DA (2005) Growth of Listeria monocytogenes in the guinea pig placenta and role of cell-to-cell spread in fetal infection. J Infect Dis 191:1889–1897PubMedCrossRefGoogle Scholar
  5. Barbuddhe SB, Malik SV, Gupta LK (2000) Kinetics of antibody production and clinical profiles of calves experimentally infected with Listeria monocytogenes. J Vet Med B Infect Dis Vet Public Health 47:497–502PubMedGoogle Scholar
  6. Begley M, Gahan CG, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012PubMedCrossRefGoogle Scholar
  7. Begley M, Sleator RD, Gahan CG, Hill C (2005) Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 73:894–904PubMedCrossRefGoogle Scholar
  8. Bigot A, Pagniez H, Botton E et al (2005) Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun 73:5530–5539PubMedCrossRefGoogle Scholar
  9. Borezee E, Pellegrini E, Berche P (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077PubMedCrossRefGoogle Scholar
  10. Briones V, Blanco MM, Marco A et al (1992) Biliary excretion as possible origin of Listeria monocytogenes in fecal carriers. Am J Vet Res 53:191–193PubMedGoogle Scholar
  11. Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263PubMedCrossRefGoogle Scholar
  12. Carrique-Mas JJ, Hokeberg I, Andersson Y et al (2003) Febrile gastroenteritis after eating on-farm manufactured fresh cheese – an outbreak of listeriosis? Epidemiol Infect 130:79–86PubMedCrossRefGoogle Scholar
  13. Chatterjee SS, Hossain H, Otten S et al (2006) Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74:1323–1338PubMedCrossRefGoogle Scholar
  14. Chaudhari SP, Malik SV, Rekha GB, Barbuddhe SB (2001) Detection of anti-listeriolysin O and Listeria monocytogenes in experimentally infected buffaloes (Bubalus bubalis). Trop Anim Health Prod 33:285–293PubMedCrossRefGoogle Scholar
  15. Chowdhury R, Sahu G, Das J (1996) Stress response in pathogenic bacteria. J Biosci 21:149–160CrossRefGoogle Scholar
  16. Christiansen JK, Larsen MH, Ingmer H et al (2004) The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 186:3355–3362PubMedCrossRefGoogle Scholar
  17. Cobb CA, Curtis GD, Bansi DS et al (1996) Increased prevalence of Listeria monocytogenes in the faeces of patients receiving long-term H2-antagonists. Eur J Gastroenterol Hepatol 8:1071–1074PubMedCrossRefGoogle Scholar
  18. Cone LA, Fitzmorris AO, Hirschberg JM (2001) Is Listeria monocytogenes an important pathogen for prosthetic joints? J Clin Rheumatol 7:34–37PubMedCrossRefGoogle Scholar
  19. Conte MP, Petrone G, Di Biase AM et al (2000) Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb Pathog 29:137–144PubMedCrossRefGoogle Scholar
  20. Cotter PD, Gahan CG, Hill C (2001) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475PubMedCrossRefGoogle Scholar
  21. Cotter PD, Draper LA, Lawton EM et al (2008) Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog 4:e1000144PubMedCrossRefGoogle Scholar
  22. Czuprynski CJ, Faith NG, Steinberg H (2002) Ability of the Listeria monocytogenes strain Scott A to cause systemic infection in mice infected by the intragastric route. Appl Environ Microbiol 68:2893–2900PubMedCrossRefGoogle Scholar
  23. Dalet K, Gouin E, Cenatiempo Y et al (1999) Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes. FEMS Microbiol Lett 174:111–116PubMedCrossRefGoogle Scholar
  24. Dalton CB, Austin CC, Sobel J et al (1997) An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med 336:100–105PubMedCrossRefGoogle Scholar
  25. Davis MJ, Coote PJ, O'Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142:2975–2982PubMedCrossRefGoogle Scholar
  26. Disson O, Grayo S, Huillet E et al (2008) Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118PubMedCrossRefGoogle Scholar
  27. Donnelly CW (2001) Listeria monocytogenes: a continuing challenge. Nutr Rev 59:183–194PubMedCrossRefGoogle Scholar
  28. Dramsi S, Cossart P (1998) Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol 14:137–166PubMedCrossRefGoogle Scholar
  29. Dussurget O, Cabanes D, Dehoux P et al (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106PubMedCrossRefGoogle Scholar
  30. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511PubMedGoogle Scholar
  31. Farber JM, Peterkin PI, Carter AO et al (1991) Neonatal listeriosis due to cross-infection confirmed by isoenzyme typing and DNA fingerprinting. J Infect Dis 163:927–928PubMedGoogle Scholar
  32. Ferreira A, O'Byrne CP, Boor KJ (2001) Role of sigma(B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67:4454–4457PubMedCrossRefGoogle Scholar
  33. Ferreira A, Sue D, O'Byrne CP, Boor KJ (2003) Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 69:2692–2698PubMedCrossRefGoogle Scholar
  34. Foster JW, Spector MP (1995) How Salmonella survive against the odds. Annu Rev Microbiol. 49:145–174PubMedCrossRefGoogle Scholar
  35. Fraser KR, Harvie D, Coote PJ, O'Byrne CP (2000) Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 66:4696–4704PubMedCrossRefGoogle Scholar
  36. Frye DM, Zweig R, Sturgeon J et al (2002) An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin Infect Dis 35:943–949PubMedCrossRefGoogle Scholar
  37. Gahan CG, Hill C (2005) Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol 98:1345–1353PubMedCrossRefGoogle Scholar
  38. Gaillard JL, Finlay BB (1996) Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect Immun 64:1299–1308PubMedGoogle Scholar
  39. Glaser P, Frangeul L, Buchrieser C et al (2001) Comparative genomics of Listeria species. Science 294:849–852PubMedGoogle Scholar
  40. Gutierrez C, Devedjian JC (1991) Osmotic induction of gene osmC expression in Escherichia coli K12. J Mol Biol 220:959–973PubMedCrossRefGoogle Scholar
  41. Hain T, Hossain H, Chatterjee SS et al (2008) Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiol 28:8–20Google Scholar
  42. Hanawa T, Yamamoto T, Kamiya S (1995) Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect Immun 63:4595–4599PubMedGoogle Scholar
  43. Hardy J, Francis KP, DeBoer M et al (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853PubMedCrossRefGoogle Scholar
  44. Hardy J, Chu P, Contag CH (2009) Foci of Listeria monocytogenes persist in the bone marrow. Dis Model Mech 2:39–46PubMedCrossRefGoogle Scholar
  45. Havell EA, Beretich GR Jr, Carter PB (1999) The mucosal phase of Listeria infection. Immunobiology 201:164–177PubMedGoogle Scholar
  46. Ho JL, Shands KN, Friedland G et al (1986) An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch Intern Med 146:520–524PubMedCrossRefGoogle Scholar
  47. Hof H (2001) Listeria monocytogenes: a causative agent of gastroenteritis? Eur J Clin Microbiol Infect Dis 20:369–373PubMedCrossRefGoogle Scholar
  48. Hugot JP, Alberti C, Berrebi D et al (2003) Crohn's disease: the cold chain hypothesis. Lancet 362:2012–2015PubMedCrossRefGoogle Scholar
  49. Janot L, Secher T, Torres D et al (2008) CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection. J Infect Dis 198:115–124PubMedCrossRefGoogle Scholar
  50. Jensen VB, Harty JT, Jones BD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun 66:3758–3766PubMedGoogle Scholar
  51. Karunasagar I, Senghaas B, Krohne G, Goebel W (1994) Ultrastructural study of Listeria monocytogenes entry into cultured human colonic epithelial cells. Infect Immun 62:3554–3558PubMedGoogle Scholar
  52. Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756PubMedCrossRefGoogle Scholar
  53. Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M (2003) Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185:5722–5734PubMedCrossRefGoogle Scholar
  54. Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470PubMedCrossRefGoogle Scholar
  55. Kim H, Marquis H, Boor KJ (2005) SigmaB contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB. Microbiology 151:3215–3222PubMedCrossRefGoogle Scholar
  56. Ko R, Smith LT (1999) Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Appl Environ Microbiol 65:4040–4048PubMedGoogle Scholar
  57. Kobayashi KS, Chamaillard M, Ogura Y et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734PubMedCrossRefGoogle Scholar
  58. Lecuit M (2005) Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect 11:430–436PubMedCrossRefGoogle Scholar
  59. Lecuit M (2007) Human listeriosis and animal models. Microbes Infect 9:1216–1225PubMedCrossRefGoogle Scholar
  60. Lecuit M, Ohayon H, Braun L et al (1997) Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319PubMedGoogle Scholar
  61. Lecuit M, Dramsi S, Gottardi C et al (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18:3956–3963PubMedCrossRefGoogle Scholar
  62. Lecuit M, Vandormael-Pournin S, Lefort J et al (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725PubMedCrossRefGoogle Scholar
  63. Lorber B (1991) Listeriosis following shigellosis. Rev Infect Dis 13:865–866PubMedGoogle Scholar
  64. Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63:1252–1255PubMedGoogle Scholar
  65. Lungu B, Ricke SC, Johnson MG (2009) Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe 15:7–17PubMedCrossRefGoogle Scholar
  66. MacDonald TT, Carter PB (1980) Cell-mediated immunity to intestinal infection. Infect Immun 28:516–523PubMedGoogle Scholar
  67. Machata S, Tchatalbachev S, Mohamed W et al (2008) Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol 181:2028–2035PubMedGoogle Scholar
  68. Machesky LM (1997) Cell motility: complex dynamics at the leading edge. Curr Biol 7:R164–R167PubMedCrossRefGoogle Scholar
  69. Marco AJ, Prats N, Ramos JA et al (1992) A microbiological, histopathological and immunohistological study of the intragastric inoculation of Listeria monocytogenes in mice. J Comp Pathol 107:1–9PubMedCrossRefGoogle Scholar
  70. McLauchlin J (1990) Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. Eur J Clin Microbiol Infect Dis 9:210–213PubMedCrossRefGoogle Scholar
  71. Mendum ML, Smith LT (2002) Gbu glycine betaine porter and carnitine uptake in osmotically stressed Listeria monocytogenes cells. Appl Environ Microbiol 68:5647–5655PubMedCrossRefGoogle Scholar
  72. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932PubMedCrossRefGoogle Scholar
  73. Miettinen MK, Siitonen A, Heiskanen P et al (1999) Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J Clin Microbiol 37:2358–2360PubMedGoogle Scholar
  74. Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol 153:232–240PubMedGoogle Scholar
  75. O'Driscoll B, Gahan CG, Hill C (1996) Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62:1693–1698PubMedGoogle Scholar
  76. Ogawa M, Nakagawa I, Yoshikawa Y et al (2009) Streptococcus-, Shigella-, and Listeria-induced autophagy. Methods Enzymol 452:363–381PubMedCrossRefGoogle Scholar
  77. O'Neil HS, Marquis H (2006) Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 74:6675–6681PubMedCrossRefGoogle Scholar
  78. Ooi ST, Lorber B (2005) Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis 40:1327–1332PubMedCrossRefGoogle Scholar
  79. Pinner RW, Schuchat A, Swaminathan B et al (1992) Role of foods in sporadic listeriosis. II. Microbiologic and epidemiologic investigation. The Listeria Study Group. JAMA 267:2046–2050PubMedCrossRefGoogle Scholar
  80. Pron B, Boumaila C, Jaubert F et al (1998) Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system. Infect Immun 66:747–755PubMedGoogle Scholar
  81. Pron B, Boumaila C, Jaubert F et al (2001) Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiol 3:331–340PubMedCrossRefGoogle Scholar
  82. Racz P, Tenner K, Mero E (1972) Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental listeria infection. Lab Invest 26:694–700PubMedGoogle Scholar
  83. Roche SM, Gracieux P, Milohanic E et al (2005) Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl Environ Microbiol 71:6039–6048PubMedCrossRefGoogle Scholar
  84. Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268PubMedCrossRefGoogle Scholar
  85. Salamina G, Dalle DE, Niccolini A et al (1996) A foodborne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol Infect 117:429–436PubMedCrossRefGoogle Scholar
  86. Schlech WF III, Lavigne PM, Bortolussi RA et al (1983) Epidemic listeriosis–evidence for transmission by food. N Engl J Med 308:203–206PubMedCrossRefGoogle Scholar
  87. Schlech WF III, Schlech WF, Haldane H et al (2005) Does sporadic Listeria gastroenteritis exist? A 2-year population-based survey in Nova Scotia, Canada. Clin Infect Dis 41:778–784PubMedCrossRefGoogle Scholar
  88. Schubert WD, Göbel G, Diepholz M et al (2001) Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. J Mol Biol 312(4):783–794PubMedCrossRefGoogle Scholar
  89. Schubert WD, Urbanke C, Ziehm T (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111(6):825–836PubMedCrossRefGoogle Scholar
  90. Schuchat A, Deaver KA, Wenger JD et al (1992) Role of foods in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study group. JAMA 267:2041–2045PubMedCrossRefGoogle Scholar
  91. Shen Y, Naujokas M, Park M, Ireton K (2000) InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510PubMedCrossRefGoogle Scholar
  92. Sim J, Hood D, Finnie L, Wilson M et al (2002) Series of incidents of Listeria monocytogenes non-invasive febrile gastroenteritis involving ready-to-eat meats. Lett Appl Microbiol 35:409–413PubMedCrossRefGoogle Scholar
  93. Sleator RD, Gahan CG, Abee T, Hill C (1999) Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 65:2078–2083PubMedGoogle Scholar
  94. Sleator RD, Wouters J, Gahan CG et al (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67:2692–2698PubMedCrossRefGoogle Scholar
  95. Sleator RD, Wemekamp-Kamphuis HH, Gahan CG et al (2005) A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol Microbiol 55:1183–1195PubMedCrossRefGoogle Scholar
  96. Sleator RD, Clifford T, Hill C (2007) Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection? Med Hypotheses 69:1090–1092PubMedCrossRefGoogle Scholar
  97. Stack HM, Sleator RD, Bowers M et al (2005) Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 71:4241–4247PubMedCrossRefGoogle Scholar
  98. Tabib W, Guiffault P, Lemort CB, Berrada H (2002) Prosthetic hip joint infection caused by Listeria monocytogenes. Acta Orthop Belg 68:182–186PubMedGoogle Scholar
  99. Till A, Rosenstiel P, Bräutigam K (2008) A role for membrane-bound CD147 in NOD2-mediated recognition of bacterial cytoinvasion. J Cell Sci 121:487–495PubMedCrossRefGoogle Scholar
  100. Vazquez-Boland JA, Kuhn M, Berche P et al (2001a) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640CrossRefGoogle Scholar
  101. Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B et al (2001b) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584CrossRefGoogle Scholar
  102. Wemekamp-Kamphuis HH, Wouters JA et al (2002) Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 68:4710–4716PubMedCrossRefGoogle Scholar
  103. Wemekamp-Kamphuis HH, Sleator RD et al (2004) Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 70:2912–2918PubMedCrossRefGoogle Scholar
  104. Wollert T, Pasche B, Rochon M et al (2007) Extending the host range of Listeria monocytogenes by rational protein design. Cell 129:891–902PubMedCrossRefGoogle Scholar
  105. Wonderling LD, Wilkinson BJ, Bayles DO (2004) The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl Environ Microbiol 70:1935–1943PubMedCrossRefGoogle Scholar
  106. Yano T, Kurata S (2009) An unexpected twist for autophagy in Crohn's disease. Nat Immunol 10:134–136PubMedCrossRefGoogle Scholar
  107. Zachar Z, Savage DC (1979) Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect Immun 23:168–174PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Medical MicrobiologyJustus-Liebig UniversityGiessenGermany
  2. 2.ICAR Research Complex for GoaElaIndia

Personalised recommendations