Skip to main content

Molecular Mechanisms of Salmonella Virulence and Host Resistance

  • Chapter
  • First Online:
Molecular Mechanisms of Bacterial Infection via the Gut

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 337))

Abstract

Salmonella species can cause typhoid fever and gastroenteritis in humans and pose a global threat to human health. In order to establish a successful infection, Salmonella utilize a large number of genes encoding a variety of virulence factors. Different animal models of infection have been used to better understand the mechanisms underlying each disease including cattle, rodents, and nematodes. To date, a number of different bacterial virulence factors have been identified using such animal models, most of which are secreted by two type three secretion systems (T3SS) encoded within Salmonella pathogenicity islands (SPI) 1 and 2. These proteins alter various host cell pathways, facilitating the invasion of epithelial cells during infection, as well as the survival and replication of Salmonella inside phagocytic cells. On the other hand, host genetics and resistance also play a role in the susceptibility to Salmonella infection. The natural resistance-associated macrophage protein 1 (Nramp1), for example, is critical for host defense, since mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S. Typhimurium. In this chapter, we analyze the different pathogen and host factors that play a role in the dynamic interaction between Salmonella and its host and their impact on disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen presenting cell

CD:

Cluster of differentiation

DC:

Dendritic cell

GALT:

Gut-associated lymphoid tissue

IFN-γ:

Interferon-γ

IL (e.g. IL-1):

Interleukin

iNOS:

Inducible nitric oxide synthase

IκBα:

Inhibitory protein κ-B α

Lamp1:

Lysosome-associated membrane protein

LM:

Lamina propria

LPS:

Lipopolysaccharide

M Cell:

Microfold cell

M6PR:

Mannose-6-phosphate receptor

MAPK:

MAP kinase

MHC-II:

Major histocompatibility complex II

MLN:

Mesenteric lymph node

NF-κB:

Nuclear factor κB

Nramp1:

Natural resistance-associated macrophage protein 1

PAMP:

Pathogen associated molecular pattern

phox:

Phagocyte oxidase

PMN:

Polymorphonuclear leukocyte

PP:

Peyer’s patches

PRR:

Pattern recognition receptor

RES:

Reticuloendothelial system

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

S. Enterica:

Salmonella enterica

S. Paratyphi:

Salmonella enterica serovar Paratyphi

S. Typhi:

Salmonella enterica serovar Typhi

S. Dublin:

Salmonella enterica serovar Dublin

S. Enteritidis:

Salmonella enterica serovar Enteritidis

S. Typhimurium:

Salmonella enterica serovar Typhimurium

SCL11A1:

Solute carrier family of multimembrane spanning protein 11

SCV:

Salmonella-containing vacuole

SPI:

Salmonella pathogenicity island

T3SS:

Type three (III) secretion system

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor-α

WT:

Wild-type

References

  • Infectious disease information: salmonella infection. Centers for Disease Control, USA, 2003

    Google Scholar 

  • Abrahams GL, Muller P, Hensel M (2006) Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 7:950–965

    CAS  PubMed  Google Scholar 

  • Alegado RA, Tan MW (2008) Resistance to antimicrobial peptides contributes to persistence of Salmonella typhimurium in the C. elegans intestine. Cell Microbiol 10:1259–1273

    CAS  PubMed  Google Scholar 

  • Alpuche Aranda CM, Swanson JA, Loomis WP, Miller SI (1992) Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA 89:10079–10083

    CAS  PubMed  Google Scholar 

  • Altier C (2005) Genetic and environmental control of salmonella invasion. J Microbiol 43(Spec No):85–92

    CAS  PubMed  Google Scholar 

  • Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, McMahon SA, Ghosh P, Hughes TR, Boone C, Dixon JE (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124:133–145

    CAS  PubMed  Google Scholar 

  • Bajaj V, Lucas RL, Hwang C, Lee CA (1996) Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714

    CAS  PubMed  Google Scholar 

  • Bakowski MA, Cirulis JT, Brown NF, Finlay BB, Brumell JH (2007) SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 9:2839–2855

    CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    CAS  PubMed  Google Scholar 

  • Bao S, Beagley KW, France MP, Shen J, Husband AJ (2000) Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 99:464–472

    CAS  PubMed  Google Scholar 

  • Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Russmann H, Hardt WD (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71:2839–2858

    CAS  PubMed  Google Scholar 

  • Behlau I, Miller SI (1993) A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol 175:4475–4484

    CAS  PubMed  Google Scholar 

  • Benjamin WH Jr, Hall P, Roberts SJ, Briles DE (1990) The primary effect of the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively protected from killing. J Immunol 144:3143–3151

    CAS  PubMed  Google Scholar 

  • Bernheiden M, Heinrich JM, Minigo G, Schutt C, Stelter F, Freeman M, Golenbock D, Jack RS (2001) LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J Endotoxin Res 7:447–450

    CAS  PubMed  Google Scholar 

  • Beuzon CR, Meresse S, Unsworth KE, Ruiz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW (2000) Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249

    CAS  PubMed  Google Scholar 

  • Blackwell JM, Searle S, Goswami T, Miller EN (2000) Understanding the multiple functions of Nramp1. Microbes Infect 2:317–321

    CAS  PubMed  Google Scholar 

  • Blanc-Potard AB, Groisman EA (1997) The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385

    CAS  PubMed  Google Scholar 

  • Boucrot E, Beuzon CR, Holden DW, Gorvel JP, Meresse S (2003) Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function. J Biol Chem 278:14196–14202

    CAS  PubMed  Google Scholar 

  • Boucrot E, Henry T, Borg JP, Gorvel JP, Meresse S (2005) The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308:1174–1178

    CAS  PubMed  Google Scholar 

  • Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, Mulvey MR (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183:5725–5732

    CAS  PubMed  Google Scholar 

  • Boyle EC, Brown NF, Finlay BB (2006) Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol 8:1946–1957

    CAS  PubMed  Google Scholar 

  • Brawn LC, Hayward RD, Koronakis V (2007) Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1:63–75

    CAS  PubMed  Google Scholar 

  • Brumell JH, Kujat-Choy S, Brown NF, Vallance BA, Knodler LA, Finlay BB (2003) SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4:36–48

    CAS  PubMed  Google Scholar 

  • Bueno SM, Tobar JA, Iruretagoyena MI, Kalergis AM (2005) Molecular interactions between dendritic cells and Salmonella: escape from adaptive immunity and implications on pathogenesis. Crit Rev Immunol 25:389–403

    CAS  PubMed  Google Scholar 

  • Bustamante VH, Martinez LC, Santana FJ, Knodler LA, Steele-Mortimer O, Puente JL (2008) HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci USA 105:14591–14596

    CAS  PubMed  Google Scholar 

  • Canonne-Hergaux F, Calafat J, Richer E, Cellier M, Grinstein S, Borregaard N, Gros P (2002) Expression and subcellular localization of NRAMP1 in human neutrophil granules. Blood 100:268–275

    CAS  PubMed  Google Scholar 

  • Chakravortty D, Hansen-Wester I, Hensel M (2002) Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166

    CAS  PubMed  Google Scholar 

  • Chang J, Myeni SK, Lin TL, Wu CC, Staiger CJ, Zhou D (2007) SipC multimerization promotes actin nucleation and contributes to Salmonella-induced inflammation. Mol Microbiol 66:1548–1556

    CAS  PubMed  Google Scholar 

  • Cheminay C, Chakravortty D, Hensel M (2004) Role of neutrophils in murine salmonellosis. Infect Immun 72:468–477

    CAS  PubMed  Google Scholar 

  • Cheminay C, Mohlenbrink A, Hensel M (2005) Intracellular salmonella inhibit antigen presentation by dendritic cells. J Immunol 174:2892–2899

    CAS  PubMed  Google Scholar 

  • Cherayil BJ, McCormick BA, Bosley J (2000) Salmonella enterica serovar typhimurium-dependent regulation of inducible nitric oxide synthase expression in macrophages by invasins SipB, SipC, and SipD and effector SopE2. Infect Immun 68:5567–5574

    CAS  PubMed  Google Scholar 

  • Coburn B, Li Y, Owen D, Vallance BA, Finlay BB (2005) Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis. Infect Immun 73:3219–3227

    CAS  PubMed  Google Scholar 

  • Collazo CM, Galan JE (1997) The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol Microbiol 24:747–756

    CAS  PubMed  Google Scholar 

  • Collier-Hyams LS, Zeng H, Sun J, Tomlinson AD, Bao ZQ, Chen H, Madara JL, Orth K, Neish AS (2002) Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J Immunol 169:2846–2850

    CAS  PubMed  Google Scholar 

  • Conlan JW (1996) Neutrophils prevent extracellular colonization of the liver microvasculature by Salmonella typhimurium. Infect Immun 64:1043–1047

    CAS  PubMed  Google Scholar 

  • Conlan JW (1997) Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun 65:630–635

    CAS  PubMed  Google Scholar 

  • Conlan JW, North RJ (1992) Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun 60:5164–5171

    CAS  PubMed  Google Scholar 

  • Coombes BK, Brown NF, Kujat-Choy S, Vallance BA, Finlay BB (2003) SseA is required for translocation of Salmonella pathogenicity island-2 effectors into host cells. Microbes Infect 5:561–570

    CAS  PubMed  Google Scholar 

  • Coombes BK, Coburn BA, Potter AA, Gomis S, Mirakhur K, Li Y, Finlay BB (2005a) Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect Immun 73:7161–7169

    CAS  PubMed  Google Scholar 

  • Coombes BK, Wickham ME, Brown NF, Lemire S, Bossi L, Hsiao WW, Brinkman FS, Finlay BB (2005b) Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar typhimurium with autonomous expression from its associated phage. J Mol Biol 348:817–830

    CAS  PubMed  Google Scholar 

  • Coombes BK, Lowden MJ, Bishop JL, Wickham ME, Brown NF, Duong N, Osborne S, Gal-Mor O, Finlay BB (2007) SseL is a salmonella-specific translocated effector integrated into the SsrB-controlled salmonella pathogenicity island 2 type III secretion system. Infect Immun 75:574–580

    CAS  PubMed  Google Scholar 

  • Cuellar-Mata P, Jabado N, Liu J, Furuya W, Finlay BB, Gros P, Grinstein S (2002) Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J Biol Chem 277:2258–2265

    CAS  PubMed  Google Scholar 

  • Darwin KH, Miller VL (1999) Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12:405–428

    CAS  PubMed  Google Scholar 

  • Deiwick J, Nikolaus T, Erdogan S, Hensel M (1999) Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 31:1759–1773

    CAS  PubMed  Google Scholar 

  • Deiwick J, Salcedo SP, Boucrot E, Gilliland SM, Henry T, Petermann N, Waterman SR, Gorvel JP, Holden DW, Meresse S (2006) he translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect Immun 74:6965–6972

    CAS  PubMed  Google Scholar 

  • Drecktrah D, Knodler LA, Galbraith K, Steele-Mortimer O (2005) The Salmonella SPI1 effector SopB stimulates nitric oxide production long after invasion. Cell Microbiol 7:105–113

    CAS  PubMed  Google Scholar 

  • Dukes JD, Lee H, Hagen R, Reaves BJ, Layton AN, Galyov EE, Whitley P (2006) The secreted Salmonella dublin phosphoinositide phosphatase, SopB, localizes to PtdIns(3) P-containing endosomes and perturbs normal endosome to lysosome trafficking. Biochem J 395:239–247

    CAS  PubMed  Google Scholar 

  • Dunstan SJ, Ramsay AJ, Strugnell RA (1996) Studies of immunity and bacterial invasiveness in mice given a recombinant salmonella vector encoding murine interleukin-6. Infect Immun 64:2730–2736

    CAS  PubMed  Google Scholar 

  • Eckmann L, Kagnoff MF (2001) Cytokines in host defense against Salmonella. Microbes Infect 3:1191–1200

    CAS  PubMed  Google Scholar 

  • Eckmann L, Fierer J, Kagnoff MF (1996) Genetically resistant (Ityr) and susceptible (Itys) congenic mouse strains show similar cytokine responses following infection with Salmonella dublin. J Immunol 156:2894–2900

    CAS  PubMed  Google Scholar 

  • Eichelberg K, Galan JE (1999) Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA. Infect Immun 67:4099–4105

    CAS  PubMed  Google Scholar 

  • Ellermeier JR, Slauch JM (2007) Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29

    CAS  PubMed  Google Scholar 

  • Ellermeier CD, Ellermeier JR, Slauch JM (2005) HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57:691–705

    CAS  PubMed  Google Scholar 

  • Fierer J, Guiney DG (2001) Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 107:775–780

    CAS  PubMed  Google Scholar 

  • Fink SL, Cookson BT (2007) Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol 9:2562–2570

    CAS  PubMed  Google Scholar 

  • Folkesson A, Lofdahl S, Normark S (2002) The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153:537–545

    CAS  PubMed  Google Scholar 

  • Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host- pathogen interactions. Trends Microbiol 9:397–403

    CAS  PubMed  Google Scholar 

  • Freeman JA, Rappl C, Kuhle V, Hensel M, Miller SI (2002) SpiC is required for translocation of Salmonella pathogenicity island 2 effectors and secretion of translocon proteins SseB and SseC. J Bacteriol 184:4971–4980

    CAS  PubMed  Google Scholar 

  • Freeman JA, Ohl ME, Miller SI (2003) The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect Immun 71:418–427

    CAS  PubMed  Google Scholar 

  • Fu Y, Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297

    CAS  PubMed  Google Scholar 

  • Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86

    CAS  PubMed  Google Scholar 

  • Galan JE, Curtiss R 3rd (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–6387

    CAS  PubMed  Google Scholar 

  • Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    CAS  PubMed  Google Scholar 

  • Gal-Mor O, Valdez Y, Finlay BB (2006) The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice. Microbes Infect 8:2154–2162

    CAS  PubMed  Google Scholar 

  • Garcia Vescovi E, Soncini FC, Groisman EA (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–174

    CAS  PubMed  Google Scholar 

  • Garcia-del Portillo F (2001) Salmonella intracellular proliferation: where, when and how? Microbes Infect 3:1305–1311

    CAS  PubMed  Google Scholar 

  • Geddes K, Worley M, Niemann G, Heffron F (2005) Identification of new secreted effectors in Salmonella enterica serovar Typhimurium. Infect Immun 73:6260–6271

    CAS  PubMed  Google Scholar 

  • Geddes K, Cruz F, Heffron F (2007) Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog 3:e196

    PubMed  Google Scholar 

  • Gerlach RG, Jackel D, Stecher B, Wagner C, Lupas A, Hardt WD, Hensel M (2007) Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol 9:1834–1850

    CAS  PubMed  Google Scholar 

  • Giacomodonato MN, Uzzau S, Bacciu D, Caccuri R, Sarnacki SH, Rubino S, Cerquetti MC (2007) SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153:1221–1228

    CAS  PubMed  Google Scholar 

  • Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P (1996) The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele. Infect Immun 64:2923–2929

    CAS  PubMed  Google Scholar 

  • Govoni G, Gauthier S, Billia F, Iscove NN, Gros P (1997) Cell-specific and inducible Nramp1 gene expression in mouse macrophages in vitro and in vivo. J Leukoc Biol 62:277–286

    CAS  PubMed  Google Scholar 

  • Grassl GA, Finlay BB (2008) Pathogenesis of enteric Salmonella infections. Curr Opin Gastroenterol 24:22–26

    CAS  PubMed  Google Scholar 

  • Grassl GA, Valdez Y, Bergstrom KS, Vallance BA, Finlay BB (2008) Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis. Gastroenterology 134:768–780

    CAS  PubMed  Google Scholar 

  • Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–730

    CAS  PubMed  Google Scholar 

  • Halici S, Zenk SF, Jantsch J, Hensel M (2008) Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells. Infect Immun 76:4924–4933

    CAS  PubMed  Google Scholar 

  • Hansen-Wester I, Hensel M (2001) Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect 3:549–559

    CAS  PubMed  Google Scholar 

  • Hapfelmeier S, Hardt WD (2005) A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol 13:497–503

    CAS  PubMed  Google Scholar 

  • Hapfelmeier S, Ehrbar K, Stecher B, Barthel M, Kremer M, Hardt WD (2004) Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72:795–809

    CAS  PubMed  Google Scholar 

  • Hapfelmeier S, Stecher B, Barthel M, Kremer M, Muller AJ, Heikenwalder M, Stallmach T, Hensel M, Pfeffer K, Akira S, Hardt WD (2005) The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol 174:1675–1685

    CAS  PubMed  Google Scholar 

  • Hapfelmeier S, Muller AJ, Stecher B, Kaiser P, Barthel M, Endt K, Eberhard M, Robbiani R, Jacobi CA, Heikenwalder M, Kirschning C, Jung S, Stallmach T, Kremer M, Hardt WD (2008) Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG S.Typhimurium colitis. J Exp Med 205:437–450

    CAS  PubMed  Google Scholar 

  • Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826

    CAS  PubMed  Google Scholar 

  • Hayward RD, Koronakis V (1999) Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18:4926–4934

    CAS  PubMed  Google Scholar 

  • Hayward RD, Koronakis V (2002) Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol 12:15–20

    CAS  PubMed  Google Scholar 

  • Hayward RD, McGhie EJ, Koronakis V (2000) Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol Microbiol 37:727–739

    CAS  PubMed  Google Scholar 

  • Henry T, Couillault C, Rockenfeller P, Boucrot E, Dumont A, Schroeder N, Hermant A, Knodler LA, Lecine P, Steele-Mortimer O, Borg JP, Gorvel JP, Meresse S (2006) The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci USA 103:13497–13502

    CAS  PubMed  Google Scholar 

  • Hensel M (2000) Salmonella pathogenicity island 2. Mol Microbiol 36:1015–1023

    CAS  PubMed  Google Scholar 

  • Hensel M (2004) Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294:95–102

    CAS  PubMed  Google Scholar 

  • Hensel M, Shea JE, Waterman SR, Mundy R, Nikolaus T, Banks G, Vazquez-Torres A, Gleeson C, Fang FC, Holden DW (1998) Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30:163–174

    CAS  PubMed  Google Scholar 

  • Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    CAS  PubMed  Google Scholar 

  • Hensel M, Nikolaus T, Egelseer C (1999) Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol 31:489–498

    CAS  PubMed  Google Scholar 

  • Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401

    CAS  PubMed  Google Scholar 

  • Holden DW (2002) Trafficking of the Salmonella vacuole in macrophages. Traffic 3:161–169

    CAS  PubMed  Google Scholar 

  • Hong KH, Miller VL (1998) Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol 180:1793–1802

    CAS  PubMed  Google Scholar 

  • Huang FC, Werne A, Li Q, Galyov EE, Walker WA, Cherayil BJ (2004) Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar typhimurium infection. Infect Immun 72:5052–5062

    CAS  PubMed  Google Scholar 

  • Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P (2000) Natural resistance to intracellular infections: natural resistance- associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192:1237–1248

    CAS  PubMed  Google Scholar 

  • Jiang X, Rossanese OW, Brown NF, Kujat-Choy S, Galan JE, Finlay BB, Brumell JH (2004) The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Mol Microbiol 54:1186–1198

    CAS  PubMed  Google Scholar 

  • Jones BD (2005) Salmonella invasion gene regulation: a story of environmental awareness. J Microbiol 43(Spec No):110–117

    CAS  PubMed  Google Scholar 

  • Jones MA, Wood MW, Mullan PB, Watson PR, Wallis TS, Galyov EE (1998) Secreted effector proteins of Salmonella dublin act in concert to induce enteritis. Infect Immun 66:5799–5804

    CAS  PubMed  Google Scholar 

  • Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS (2008) Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe 3:233–244

    CAS  PubMed  Google Scholar 

  • Kaufmann SH, Raupach B, Finlay BB (2001) Introduction: microbiology and immunology: lessons learned from Salmonella. Microbes Infect 3:1177–1181

    CAS  PubMed  Google Scholar 

  • Knodler LA, Steele-Mortimer O (2005) The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Mol Biol Cell 16:4108–4123

    CAS  PubMed  Google Scholar 

  • Knodler LA, Celli J, Hardt WD, Vallance BA, Yip C, Finlay BB (2002) Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol 43:1089–1103

    CAS  PubMed  Google Scholar 

  • Knodler LA, Vallance BA, Hensel M, Jackel D, Finlay BB, Steele-Mortimer O (2003) Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Mol Microbiol 49:685–704

    CAS  PubMed  Google Scholar 

  • Knodler LA, Finlay BB, Steele-Mortimer O (2005) The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280:9058–9064

    CAS  PubMed  Google Scholar 

  • Kuhle V, Hensel M (2002) SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4:813–824

    CAS  PubMed  Google Scholar 

  • Kuhle V, Hensel M (2004) Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell Mol Life Sci 61:2812–2826

    CAS  PubMed  Google Scholar 

  • Kujat Choy SL, Boyle EC, Gal-Mor O, Goode DL, Valdez Y, Vallance BA, Finlay BB (2004) SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar typhimurium. Infect Immun 72:5115–5125

    PubMed  Google Scholar 

  • Lalmanach AC, Lantier F (1999) Host cytokine response and resistance to Salmonella infection. Microbes Infect 1:719–726

    CAS  PubMed  Google Scholar 

  • Lalmanach AC, Montagne A, Menanteau P, Lantier F (2001) Effect of the mouse Nramp1 genotype on the expression of IFN-gamma gene in early response to Salmonella infection. Microbes Infect 3:639–644

    CAS  PubMed  Google Scholar 

  • Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, Flavell RA, Galan JE (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407–1412

    CAS  PubMed  Google Scholar 

  • Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Monack DM (2006) Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11

    PubMed  Google Scholar 

  • Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M, Hasegawa P, Mukherjee S, Orth K, Krajewski S, Godzik A, Guiney DG, Reed JC (2008) Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-kappaB, suppresses IkappaBalpha ubiquitination and modulates innate immune responses. J Immunol 180:5045–5056

    PubMed  Google Scholar 

  • Lee AK, Detweiler CS, Falkow S (2000) OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol 182:771–781

    CAS  PubMed  Google Scholar 

  • Lembo A, Kalis C, Kirschning CJ, Mitolo V, Jirillo E, Wagner H, Galanos C, Freudenberg MA (2003) Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun 71:6058–6062

    CAS  PubMed  Google Scholar 

  • Liao AP, Petrof EO, Kuppireddi S, Zhao Y, Xia Y, Claud EC, Sun J (2008) Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells. PLoS ONE 3:e2369

    PubMed  Google Scholar 

  • Lin SL, Le TX, Cowen DS (2003) SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol 5:267–275

    CAS  PubMed  Google Scholar 

  • Linehan SA, Holden DW (2003) The interplay between Salmonella typhimurium and its macrophage host–what can it teach us about innate immunity? Immunol Lett 85:183–192

    CAS  PubMed  Google Scholar 

  • Lossi NS, Rolhion N, Magee AI, Boyle C, Holden DW (2008) The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid : cholesterol acyltransferase activity. Microbiology 154:2680–2688

    CAS  PubMed  Google Scholar 

  • Lucas RL, Lee CA (2000) Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol Microbiol 36:1024–1033

    CAS  PubMed  Google Scholar 

  • Marcus SL, Brumell JH, Pfeifer CG, Finlay BB (2000) Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2:145–156

    CAS  PubMed  Google Scholar 

  • Mastroeni P (2002) Immunity to systemic Salmonella infections. Curr Mol Med 2:393–406

    CAS  PubMed  Google Scholar 

  • Mastroeni P, Sheppard M (2004) Salmonella infections in the mouse model: host resistance factors and in vivo dynamics of bacterial spread and distribution in the tissues. Microbes Infect 6:398–405

    CAS  PubMed  Google Scholar 

  • Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–248

    CAS  PubMed  Google Scholar 

  • McCormick BA, Colgan SP, Delp-Archer C, Miller SI, Madara JL (1993) Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 123:895–907

    CAS  PubMed  Google Scholar 

  • McGhie EJ, Hayward RD, Koronakis V (2001) Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 20:2131–2139

    CAS  PubMed  Google Scholar 

  • Miao EA, Miller SI (2000) A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci USA 97:7539–7544

    CAS  PubMed  Google Scholar 

  • Miao EA, Scherer CA, Tsolis RM, Kingsley RA, Adams LG, Baumler AJ, Miller SI (1999) Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol Microbiol 34:850–864

    CAS  PubMed  Google Scholar 

  • Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI (2003) Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 48:401–415

    CAS  PubMed  Google Scholar 

  • Mirold S, Ehrbar K, Weissmuller A, Prager R, Tschape H, Russmann H, Hardt WD (2001) Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol 183:2348–2358

    CAS  PubMed  Google Scholar 

  • Mitchell EK, Mastroeni P, Kelly AP, Trowsdale J (2004) Inhibition of cell surface MHC class II expression by Salmonella. Eur J Immunol 34:2559–2567

    CAS  PubMed  Google Scholar 

  • Monack DM, Raupach B, Hromockyj AE, Falkow S (1996) Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA 93:9833–9838

    CAS  PubMed  Google Scholar 

  • Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S (2000) Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med 192:249–258

    CAS  PubMed  Google Scholar 

  • Monack DM, Bouley DM, Falkow S (2004a) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199:231–241

    CAS  PubMed  Google Scholar 

  • Monack DM, Mueller A, Falkow S (2004b) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2:747–765

    CAS  PubMed  Google Scholar 

  • Morgan E, Campbell JD, Rowe SC, Bispham J, Stevens MP, Bowen AJ, Barrow PA, Maskell DJ, Wallis TS (2004) Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54:994–1010

    CAS  PubMed  Google Scholar 

  • Murli S, Watson RO, Galan JE (2001) Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810

    CAS  PubMed  Google Scholar 

  • Nawabi P, Catron DM, Haldar K (2008) Esterification of cholesterol by a type III secretion effector during intracellular Salmonella infection. Mol Microbiol 68:173–185

    CAS  PubMed  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    CAS  PubMed  Google Scholar 

  • Nikolaus T, Deiwick J, Rappl C, Freeman JA, Schroder W, Miller SI, Hensel M (2001) SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183:6036–6045

    CAS  PubMed  Google Scholar 

  • O'Brien AD, Scher I, Formal SB (1979) Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection. Infect Immun 25:513–520

    PubMed  Google Scholar 

  • Ochman H, Groisman EA (1995) The evolution of invasion by enteric bacteria. Can J Microbiol 41:555–561

    CAS  PubMed  Google Scholar 

  • Ohlson MB, Fluhr K, Birmingham CL, Brumell JH, Miller SI (2005) SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice. Infect Immun 73:6249–6259

    CAS  PubMed  Google Scholar 

  • Ohlson MB, Huang Z, Alto NM, Blanc MP, Dixon JE, Chai J, Miller SI (2008) Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4:434–446

    CAS  PubMed  Google Scholar 

  • Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ (2002) Typhoid fever. N Engl J Med 347:1770–1782

    CAS  PubMed  Google Scholar 

  • Patel JC, Galan JE (2006) Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 175:453–463

    CAS  PubMed  Google Scholar 

  • Paulander W, Pennhag A, Andersson DI, Maisnier-Patin S (2007) Caenorhabditis elegans as a model to determine fitness of antibiotic-resistant Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 51:766–769

    CAS  PubMed  Google Scholar 

  • Pegues DA, Hantman MJ, Behlau I, Miller SI (1995) PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion. Mol Microbiol 17:169–181

    CAS  PubMed  Google Scholar 

  • Perrett CA, Jepson MA (2009) Regulation of Salmonella-induced membrane ruffling by SipA differs in strains lacking other effectors. Cell Microbiol 11:475–487

    CAS  PubMed  Google Scholar 

  • Raffatellu M, Sun YH, Wilson RP, Tran QT, Chessa D, Andrews-Polymenis HL, Lawhon SD, Figueiredo JF, Tsolis RM, Adams LG, Baumler AJ (2005a) Host restriction of Salmonella enterica serotype Typhi is not caused by functional alteration of SipA, SopB, or SopD. Infect Immun 73:7817–7826

    CAS  PubMed  Google Scholar 

  • Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, Khare S, Adams LG, Baumler AJ (2005b) SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect Immun 73:146–154

    CAS  PubMed  Google Scholar 

  • Rakeman JL, Bonifield HR, Miller SI (1999) A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J Bacteriol 181:3096–3104

    CAS  PubMed  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    CAS  PubMed  Google Scholar 

  • Richter-Dahlfors A, Buchan AM, Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580

    CAS  PubMed  Google Scholar 

  • Roark EA, Haldar K (2008) Effects of lysosomal membrane protein depletion on the Salmonella-containing vacuole. PLoS ONE 3:e3538

    PubMed  Google Scholar 

  • Rosenberger CM, Finlay BB (2003) Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol 4:385–396

    CAS  PubMed  Google Scholar 

  • Roy MF, Malo D (2002) Genetic regulation of host responses to Salmonella infection in mice. Genes Immun 3:381–393

    CAS  PubMed  Google Scholar 

  • Ruiz-Albert J, Yu XJ, Beuzon CR, Blakey AN, Galyov EE, Holden DW (2002) Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol Microbiol 44:645–661

    CAS  PubMed  Google Scholar 

  • Rumbo M, Anderle P, Didierlaurent A, Sierro F, Debard N, Sirard JC, Finke D, Kraehenbuhl JP (2004) How the gut links innate and adaptive immunity. Ann N Y Acad Sci 1029:16–21

    CAS  PubMed  Google Scholar 

  • Rydstrom A, Wick MJ (2007) Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J Immunol 178:5789–5801

    PubMed  Google Scholar 

  • Rytkonen A, Poh J, Garmendia J, Boyle C, Thompson A, Liu M, Freemont P, Hinton JC, Holden DW (2007) SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci USA 104:3502–3507

    PubMed  Google Scholar 

  • Salcedo SP, Holden DW (2003) SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 22:5003–5014

    CAS  PubMed  Google Scholar 

  • Salcedo SP, Noursadeghi M, Cohen J, Holden DW (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3:587–597

    CAS  PubMed  Google Scholar 

  • Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964

    CAS  PubMed  Google Scholar 

  • Santos RL, Tsolis RM, Baumler AJ, Smith R 3rd, Adams LG (2001a) Salmonella enterica serovar typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB-independent mechanisms. Infect Immun 69:2293–2301

    CAS  PubMed  Google Scholar 

  • Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Baumler AJ (2001b) Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335–1344

    CAS  PubMed  Google Scholar 

  • Schechter LM, Damrauer SM, Lee CA (1999) Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol Microbiol 32:629–642

    CAS  PubMed  Google Scholar 

  • Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA 93:2593–2597

    CAS  PubMed  Google Scholar 

  • Sheppard M, Webb C, Heath F, Mallows V, Emilianus R, Maskell D, Mastroeni P (2003) Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol 5:593–600

    CAS  PubMed  Google Scholar 

  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38

    CAS  PubMed  Google Scholar 

  • Stecher B, Macpherson AJ, Hapfelmeier S, Kremer M, Stallmach T, Hardt WD (2005) Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect Immun 73:3228–3241

    CAS  PubMed  Google Scholar 

  • Stecher B, Paesold G, Barthel M, Kremer M, Jantsch J, Stallmach T, Heikenwalder M, Hardt WD (2006) Chronic Salmonella enterica serovar Typhimurium-induced colitis and cholangitis in streptomycin-pretreated Nramp1+/+ mice. Infect Immun 74:5047–5057

    CAS  PubMed  Google Scholar 

  • Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB (1996) Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20:151–164

    CAS  PubMed  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    CAS  PubMed  Google Scholar 

  • Stober CB, Brode S, White JK, Popoff JF, Blackwell JM (2007) Slc11a1, formerly Nramp1, is expressed in dendritic cells and influences major histocompatibility complex class II expression and antigen-presenting cell function. Infect Immun 75:5059–5067

    CAS  PubMed  Google Scholar 

  • Suvarnapunya AE, Stein MA (2005) DNA base excision repair potentiates the protective effect of Salmonella Pathogenicity Island 2 within macrophages. Microbiology 151:557–567

    CAS  PubMed  Google Scholar 

  • Svensson M, Stockinger B, Wick MJ (1997) Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. J Immunol 158:4229–4236

    CAS  PubMed  Google Scholar 

  • Thijs IM, De Keersmaecker SC, Fadda A, Engelen K, Zhao H, McClelland M, Marchal K, Vanderleyden J (2007) Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol 189:4587–4596

    CAS  PubMed  Google Scholar 

  • Tobar JA, Gonzalez PA, Kalergis AM (2004) Salmonella escape from antigen presentation can be overcome by targeting bacteria to Fc gamma receptors on dendritic cells. J Immunol 173:4058–4065

    CAS  PubMed  Google Scholar 

  • Tobar JA, Carreno LJ, Bueno SM, Gonzalez PA, Mora JE, Quezada SA, Kalergis AM (2006) Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. Infect Immun 74:6438–6448

    CAS  PubMed  Google Scholar 

  • Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Baumler AJ (1999) Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect Immun 67:6385–6393

    CAS  PubMed  Google Scholar 

  • Uchiya K, Nikai T (2005) Salmonella pathogenicity island 2-dependent expression of suppressor of cytokine signaling 3 in macrophages. Infect Immun 73:5587–5594

    CAS  PubMed  Google Scholar 

  • Uchiya K, Nikai T (2008) Salmonella virulence factor SpiC is involved in expression of flagellin protein and mediates activation of the signal transduction pathways in macrophages. Microbiology 154:3491–3502

    CAS  PubMed  Google Scholar 

  • Valdez Y, Diehl GE, Vallance BA, Grassl GA, Guttman JA, Brown NF, Rosenberger CM, Littman DR, Gros P, Finlay BB (2008) Nramp1 expression by dendritic cells modulates inflammatory responses during Salmonella Typhimurium infection. Cell Microbiol 10:1646–1661

    CAS  PubMed  Google Scholar 

  • Valdez Y, Grassl GA, Guttman JA, Coburn B, Gros P, Vallance BA, Finlay BB (2009) Nramp1 drives an accelerated inflammatory response during Salmonella-induced colitis in mice. Cell Microbiol 11:351–362

    CAS  PubMed  Google Scholar 

  • van der Velden AW, Velasquez M, Starnbach MN (2003) Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. J Immunol 171:6742–6749

    PubMed  Google Scholar 

  • Vazquez-Torres A, Fang FC (2001a) Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol 9:29–33

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Fang FC (2001b) Salmonella evasion of the NADPH phagocyte oxidase. Microbes Infect 3:1313–1320

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804–808

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000a) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC (2000b) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Fantuzzi G, Edwards CK 3rd, Dinarello CA, Fang FC (2001) Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci USA 98:2561–2565

    CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Stevanin T, Jones-Carson J, Castor M, Read RC, Fang FC (2008) Analysis of nitric oxide-dependent antimicrobial actions in macrophages and mice. Methods Enzymol 437:521–538

    CAS  PubMed  Google Scholar 

  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    CAS  PubMed  Google Scholar 

  • Vidal S, Gros P, Skamene E (1995a) Natural resistance to infection with intracellular parasites: molecular genetics identifies Nramp1 as the Bcg/Ity/Lsh locus. J Leukoc Biol 58:382–390

    CAS  PubMed  Google Scholar 

  • Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995b) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666

    CAS  PubMed  Google Scholar 

  • Vidal SM, Malo D, Marquis JF, Gros P (2008) Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 26:81–132

    CAS  PubMed  Google Scholar 

  • Wall DM, Nadeau WJ, Pazos MA, Shi HN, Galyov EE, McCormick BA (2007) Identification of the Salmonella enterica serotype typhimurium SipA domain responsible for inducing neutrophil recruitment across the intestinal epithelium. Cell Microbiol 9:2299–2313

    CAS  PubMed  Google Scholar 

  • Wallis TS, Galyov EE (2000) Molecular basis of Salmonella-induced enteritis. Mol Microbiol 36:997–1005

    CAS  PubMed  Google Scholar 

  • Wick MJ (2003) The role of dendritic cells in the immune response to Salmonella. Immunol Lett 85:99–102

    CAS  PubMed  Google Scholar 

  • Wick MJ (2004) Living in the danger zone: innate immunity to Salmonella. Curr Opin Microbiol 7:51–57

    CAS  PubMed  Google Scholar 

  • Wick MJ (2007) Monocyte and dendritic cell recruitment and activation during oral Salmonella infection. Immunol Lett 112:68–74

    CAS  PubMed  Google Scholar 

  • Wong KK, McClelland M, Stillwell LC, Sisk EC, Thurston SJ, Saffer JD (1998) Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar typhimurium LT2. Infect Immun 66:3365–3371

    CAS  PubMed  Google Scholar 

  • Woo H, Okamoto S, Guiney D, Gunn JS, Fierer J (2008) A model of Salmonella colitis with features of diarrhea in SLC11A1 wild-type mice. PLoS ONE 3:e1603

    PubMed  Google Scholar 

  • Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, Galyov EE (1998) Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29:883–891

    CAS  PubMed  Google Scholar 

  • Wood MW, Jones MA, Watson PR, Siber AM, McCormick BA, Hedges S, Rosqvist R, Wallis TS, Galyov EE (2000) The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell Microbiol 2:293–303

    CAS  PubMed  Google Scholar 

  • Worley MJ, Nieman GS, Geddes K, Heffron F (2006) Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci USA 103:17915–17920

    CAS  PubMed  Google Scholar 

  • Wyllie S, Seu P, Goss JA (2002) The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. Microbes Infect 4:351–359

    CAS  PubMed  Google Scholar 

  • Yrlid U, Wick MJ (2002) Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter. J Immunol 169:108–116

    CAS  PubMed  Google Scholar 

  • Yrlid U, Svensson M, Hakansson A, Chambers BJ, Ljunggren HG, Wick MJ (2001) In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection. Infect Immun 69:5726–5735

    CAS  PubMed  Google Scholar 

  • Zhang S, Santos RL, Tsolis RM, Mirold S, Hardt WD, Adams LG, Baumler AJ (2002a) Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett 217:243–247

    CAS  PubMed  Google Scholar 

  • Zhang S, Santos RL, Tsolis RM, Stender S, Hardt WD, Baumler AJ, Adams LG (2002b) The Salmonella enterica serotype typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun 70:3843–3855

    CAS  PubMed  Google Scholar 

  • Zhang S, Adams LG, Nunes J, Khare S, Tsolis RM, Baumler AJ (2003a) Secreted effector proteins of Salmonella enterica serotype typhimurium elicit host-specific chemokine profiles in animal models of typhoid fever and enterocolitis. Infect Immun 71:4795–4803

    CAS  PubMed  Google Scholar 

  • Zhang S, Kingsley RA, Santos RL, Andrews-Polymenis H, Raffatellu M, Figueiredo J, Nunes J, Tsolis RM, Adams LG, Baumler AJ (2003b) Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Infect Immun 71:1–12

    CAS  PubMed  Google Scholar 

  • Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D (2006) The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol 62:786–793

    CAS  PubMed  Google Scholar 

  • Zhou D, Mooseker MS, Galan JE (1999) An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci USA 96:10176–10181

    CAS  PubMed  Google Scholar 

  • Zurawski DV, Stein MA (2003) SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon. Mol Microbiol 47:1341–1351

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kelly M. McNagny and members of the Finlay lab for critical comments on the manuscript. BBF is an HHMI International Research Scholar and the UBC Peter Wall Distinguished Professor. These studies were funded by operating grants from the Canadian Institute for Health Research (CIHR), Canadian Crohn’s and Colitis Foundation, and Genome Canada to B.B.F. R.B.R.F. is funded by a CIHR Industrial Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Brett Finlay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valdez, Y., Ferreira, R.B.R., Finlay, B.B. (2009). Molecular Mechanisms of Salmonella Virulence and Host Resistance. In: Sasakawa, C. (eds) Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01846-6_4

Download citation

Publish with us

Policies and ethics