Advertisement

Classifying Biomedical Abstracts Using Committees of Classifiers and Collective Ranking Techniques

  • Alexandre Kouznetsov
  • Stan Matwin
  • Diana Inkpen
  • Amir H. Razavi
  • Oana Frunza
  • Morvarid Sehatkar
  • Leanne Seaward
  • Peter O’Blenis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5549)

Abstract

The purpose of this work is to reduce the workload of human experts in building systematic reviews from published articles, used in evidence-based medicine. We propose to use a committee of classifiers to rank biomedical abstracts based on the predicted relevance to the topic under review. In our approach, we identify two subsets of abstracts: one that represents the top, and another that represents the bottom of the ranked list. These subsets, identified using machine learning (ML) techniques, are considered zones where abstracts are labeled with high confidence as relevant or irrelevant to the topic of the review. Early experiments with this approach using different classifiers and different representation techniques show significant workload reduction.

Keywords

Machine Learning Automatic Text Classification Systematic Reviews Ranking Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sackett, D.L., Rosenberg, W.M., Gray, J.A., Haynes, R.B., Richardson, W.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71–72 (1996)CrossRefGoogle Scholar
  2. 2.
    TrialStat corporation web resources, http://www.trialstat.com/
  3. 3.
    Pedersen, T., Kulkarni, A., Angheluta, R., Kozareva, Z., Solorio, T.: An Unsupervised Language Independent Method of Name Discrimination Using Second Order Co-occurrence Features. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 208–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Rennie, J., Shih, L., Teevan, J., Karger, D.: Tackling the poor assumptions of naive bayes text classifiers. In: ICML 2003, Washington DC (2003)Google Scholar
  5. 5.
    Su, J., Zhang, H., Ling, C.X., Matwin, S.: Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008 (2008)Google Scholar
  6. 6.
    Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the 16th International Conference on ML, Slovenia, pp. 124–133 (1999)Google Scholar
  7. 7.
    Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on ML, San Francisco, pp. 148–156 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandre Kouznetsov
    • 1
  • Stan Matwin
    • 1
  • Diana Inkpen
    • 1
  • Amir H. Razavi
    • 1
  • Oana Frunza
    • 1
  • Morvarid Sehatkar
    • 1
  • Leanne Seaward
    • 1
  • Peter O’Blenis
    • 2
  1. 1.School of Information Technology and Engineering (SITE)University of OttawaCanada
  2. 2.TrialStat CorporationOttawaCanada

Personalised recommendations