A Unified Hierarchy for Functional Dependencies, Conditional Functional Dependencies and Association Rules

  • Raoul Medina
  • Lhouari Nourine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5548)


Conditional Functional Dependencies (CFDs) are Functional Dependencies (FDs) that hold on a fragment relation of the original relation. In this paper, we show the hierarchy between FDs, CFDs and Association Rules (ARs): FDs are the union of CFDs while CFDs are the union of ARs. We also show the link between Approximate Functional Dependencies (AFDs) and approximate ARs. In this paper, we show that all those dependencies are indeed structurally the same and can be unified into a single hierarchy of dependencies. A benefit of this hierarchy is that existing algorithms which discover ARs could be adapted to discover any kind of dependencies and, moreover, generate a reduced set of dependencies. We also establish the link between the problem of finding equivalent pattern tableaux of a CFD and the problem of finding keys of a relation.


Association Rule Closure Operator Frequent Itemsets Selection Query Fragment Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
    Baudinet, M., Chomicki, J., Wolper, P.: Constraint-generating dependencies. J. Comput. Syst. Sci. 59(1), 94–115 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beeri, C., Vardi, M.Y.: Formal systems for tuple and equality generating dependencies. SIAM J. Comput. 13(1), 76–98 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of armstrong relations for functional dependencies. Journal of the ACM 31, 30–46 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bell, S., Brockhausen, P.: Discovery of data dependencies in relational databases. Technical Report LS-8 Report-14, University of Dortmund (1995)Google Scholar
  6. 6.
    Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for data cleaning. In: ICDE, pp. 746–755 (2007)Google Scholar
  7. 7.
    Bravo, L., Fan, W., Geerts, F., Ma, S.: Increasing the expressivity of conditional functional dependencies without extra complexity. In: ICDE, pp. 516–525 (2008)Google Scholar
  8. 8.
    Chiang, F., Miller, R.: Discovering data quality rules. In: VLDB (2008)Google Scholar
  9. 9.
    Chomicki, J., Marcinkowski, J.: On the computational complexity of minimal-change integrity maintenance in relational databases. Inconsistency Tolerance, 119–150 (2005)Google Scholar
  10. 10.
    Codd, E.F.: Further normalizations of the database relational model. In: Rustin, R. (ed.) Data Base Systems, pp. 33–64. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  11. 11.
    De Bra, P., Paredaens, J.: An algorithm for horizontal decompositions. Inf. Process. Lett. 17(2), 91–95 (1983)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for capturing data inconsistencies. ACM Trans. Database Syst. 33(2) (2008)Google Scholar
  13. 13.
    Fan, W., Geerts, F., Xiong, M., Lakshmanan, L.V.S.: Discovering conditional functional dependencies. In: ICDE (2009)Google Scholar
  14. 14.
    Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal tableaux for conditional functional dependencies. In: VLDB (2008)Google Scholar
  15. 15.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm for discovering functional and approximate dependencies. The Computer Journal 42(2), 100–111 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lopes, S., Petit, J.-M., Lakhal, L.: Discovering agree sets for database relation analysis. In: BDA (2000)Google Scholar
  17. 17.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: ICDT, pp. 398–416 (1999)Google Scholar
  18. 18.
    Petit, J.-M., Toumani, F., Boulicaut, J.-F., Kouloumdjian, J.: Towards the reverse engineering of denormalized relational databases. In: ICDE, pp. 218–227. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  19. 19.
    Weddell, G.E.: Reasoning about functional dependencies generalized for semantic data models. ACM Transactions on Database Systems 17(1), 32–64 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raoul Medina
    • 1
  • Lhouari Nourine
    • 1
  1. 1.Université Blaise Pascal – LIMOSAubière CedexFrance

Personalised recommendations