Region-Based vs. Edge-Based Registration for 3D Motion Capture by Real Time Monoscopic Vision

  • David Antonio Gómez Jáuregui
  • Patrick Horain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5496)


3D human motion capture by real-time monocular vision without using markers can be achieved by registering a 3D articulated model on a video. Registration consists in iteratively optimizing the match between primitives extracted from the model and the images with respect to the model position and joint angles. We extend a previous color-based registration algorithm with a more precise edge-based registration step. We present an experimental analysis of the residual error vs. the computation time and we discuss the balance between both approaches.


3D motion capture monocular vision 3D / 2D registration region matching edges matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 44–58 (2006)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image processing 34, 344–371 (1986)CrossRefGoogle Scholar
  3. 3.
    Cheung, G., Baker, S., Kanade, T.: Shape-from-silhouette for articulated objects and its use for human body kinematics estimation and motion capture. In: Computer vision and pattern recognition, Madison, Wisconsin, USA, pp. 16–22 (2003)Google Scholar
  4. 4.
    Deriche, R.: Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 78–87 (1990)CrossRefGoogle Scholar
  5. 5.
    Franco, J.-S., Boyer, E.: Une approche hybride pour calculer l’enveloppe visuelle d’objets complexes. In: ORASIS 2003, pp. 67–74. Gérardmer (2003)Google Scholar
  6. 6.
    Fontmarty, M., Lerasle, F., Danes, P.: Data Fusion within a modified Annealed Particle Filter dedicated to Human Motion Capture. In: IEEE / RSJ International Conference on Intelligent Robots and Systems IROS 2007, San Diego, CA, USA, October 29-November 2, pp. 3391–3396 (2007)Google Scholar
  7. 7.
    Gómez Jáuregui, D.A., Horain, P., Baroud, F.: Acquisition 3D des gestes par vision monoscopique en temps réel. In: Conférence MajecSTIC 2008, Marseille, France (2008)Google Scholar
  8. 8.
    Horain, P., Bomb, M.: 3D Model Based Gesture Acquisition Using a Single Camera. In: Proceedings of IEEE Workshop on Applications of Computer Vision WACV 2002, Orlando, Florida, December 3-4, pp. 158–162 (2002)Google Scholar
  9. 9.
    Lu, S., Huang, G., Samaras, D., Metaxas, D.: Model-based integration of visual cues for hand tracking. In: Proceedings of IEEE workshop on Motion and Video Computing, Orlando, Florida, pp. 119–124 (2002)Google Scholar
  10. 10.
    Marques Soares, J., Horain, P., Bideau, A., Nguyen, M.H.: Acquisition 3D du geste par vision monoscopique en temps réel et téléprésence. In: Actes de l’atelier Acquisition du geste humain par vision artificielle et applications, pp. 23–27. Toulouse (2004)Google Scholar
  11. 11.
    Mori, G., Malik, J.: Recovering 3D human body configurations using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28, 1052–1062 (2006)CrossRefGoogle Scholar
  12. 12.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 208–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pang, J., Qing, L., Huang, Q., Jiang, S.: Monocular Tracking 3D People by Gaussian Process Spatio-Temporal Variable Model. In: International Conference on Image Processing, ICIP 2007, San Antonio, Texas, USA, vol. 5, pp. 41–44 (2007)Google Scholar
  14. 14.
    Poppe, R.W.: Vision-based human motion analysis: An Overview. Computer Vision and Image Understanding 108(1-2), 4–18 (2007)CrossRefGoogle Scholar
  15. 15.
    Sminchisescu, C., Triggs, B.: Estimating Articualted Human Motion with Covariance Scaled Sampling. International Journal of Robotics Research 22, 371–393 (2003)CrossRefGoogle Scholar
  16. 16.
    Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with gaussian process dynamical models. In: Proceedings of the Conference on Computer Vision and Pattern Recognition CVPR 2006, New York, vol. 1, pp. 238–245 (2006)Google Scholar
  17. 17.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. IEEE Computer Vision and Pattern Recognition 1, 511 (2001)Google Scholar
  18. 18.
    Wright Jr., R.S., Lipchak, B., Haemel, N.: OpenGL SuperBible: Comprehensive Tutorial and Reference, 4th edn., pp. 127–172. Addison-Wesley Professional, Ann Arbor (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Antonio Gómez Jáuregui
    • 1
    • 2
  • Patrick Horain
    • 1
    • 2
  1. 1.INRIA / Projet MIRAGESLe Chesnay CedexFrance
  2. 2.Institut TELECOM ; TELECOM & Management SudParisEvry CedexFrance

Personalised recommendations