Advertisement

An Improved Structured Light Inspection of Specular Surfaces Based on Quaternary Coding

  • Chengkun Xue
  • Yankui Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5496)

Abstract

Structured light techniques with binary coding are practical to inspect the specular surfaces. The structured light approaches use a scanned array of point sources and images of the resulting reflected highlights to compute local surface orientation. Binary coding scheme is the classic scheme for efficiently coding the light sources. This paper proposes a novel quaternary coding scheme which is much more efficient than the classic binary coding scheme. In this scheme, polychromatic light sources are utilized and coded in quaternary scheme. Our experimental system is described in detail. The problem caused by the polychromatic light sources is discussed too. To solve the problem, we drew lesson from the erosion operator from the Mathematical Morphology and designed an effective algorithm. The experiment results show the new quaternary coding scheme not only keeps a very high accuracy, but also greatly improves the efficiency of the inspection of specular surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, A., Brelstaff, G.: Geometry from specularities. In: Second International Conference on Computer Vision, pp. 394–403 (1988)Google Scholar
  2. 2.
    Zisserman, A., Giblin, P., Blake, A.: The information available to a moving observer from specularities. Image and Vision Computing 7(1), 38–42 (1989)CrossRefGoogle Scholar
  3. 3.
    Schultz, H.: Retrieving shape information from multiple images of a specular surface. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(2), 195–201 (1994)CrossRefGoogle Scholar
  4. 4.
    Bonfort, T., Sturm, P.: Voxel carving for specular surfaces. In: Int. Conf. Computer Vision, Nice, France, pp. 591–596 (2003)Google Scholar
  5. 5.
    Yang, R., Pollefeys, M., Welch, G.: Dealing with textureless regions and specular highlights—a progressive space carving scheme using a novel photo-consistency measure. In: Int. Conf. Computer Vision, Nice, France, pp. 576–584 (2003)Google Scholar
  6. 6.
    Solem, J.E., Aanæs, H., Heyden, A.: Pde based shape from specularities. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Solem, J.E., Aanæs, H., Heyden, A.: A variational analysis of shape from specularities using sparse data 3D Data Processing, Visualization and Transmission. In: Proceedings of 2nd International Symposium on 3DPVT 2004, September 6-9, pp. 26–33 (2004)Google Scholar
  8. 8.
    Jalkio, J.A., Kim, R.C., Case, S.K.: Three dimensional inspection using multistripe structured light. Opt. Eng. 24(6), 966–974 (1985)CrossRefGoogle Scholar
  9. 9.
    Wahl, F.: A coded light approach for depth map acquisition,Muskererkennung 86, Informatik Fachberichte 125. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Sanderson, A.C., Weiss, L.E., Nayar, S.K.: Structured Highlight Inspection of Specular Surfaces. IEEE Transactions On Pattern Analysis And Machine Intelligence 10(1), 44–55 (1988)CrossRefGoogle Scholar
  11. 11.
    Nayar, S.K., Sanderson, A.C., Weiss, L.E., et al.: Specular surface inspection using structured highlight and Gaussian images. IEEE Transactions On Pattern Analysis And Machine Intelligence 10(1), 208–218 (1990)Google Scholar
  12. 12.
    Wisniewski, A.: Digital control methods of LED and LED lamps. Przeglad elektro-techniczny 84(8), 178–181 (2008)Google Scholar
  13. 13.
    Gilewski, M., Karpiuk, A.: An electronic control of light RGB LEDs. Przeglad elektrotechniczny 84(8), 194–198 (2008)Google Scholar
  14. 14.
    Muller, C.D.: Reckefuss, Multi-color polymeric OLEDs by solution processing. In: Organic light-emitting materials and devices VII, vol. 5214, pp. 21–30 (2004)Google Scholar
  15. 15.
    Allan, G.R.: High-speed, high-resolution, color CCD image sensor. In: Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol. 3965, pp. 70–79 (2000)Google Scholar
  16. 16.
    Debevec, P.: Image-Based Lighting. IEEE Computer Graphics and Applications 22(2), 26–34 (2002)CrossRefGoogle Scholar
  17. 17.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. (2003) ISBN:3540429883Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chengkun Xue
    • 1
  • Yankui Sun
    • 1
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingP.R. China

Personalised recommendations