Parallel versus Serial Classifier Combination for Multibiometric Hand-Based Identification

  • Andreas Uhl
  • Peter Wild
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

This paper presents an approach for optimizing both recognition and processing performance of a biometric system in identification mode. Multibiometric techniques facilitate bridging the gap between desired performance and current unimodal recognition rates. However, traditional parallel classifier combination techniques, such as Score sum, Borda count and Highest rank, cause further processing overhead, as they require a matching of the extracted sample with each template of the system for each feature. We examine a framework of serial combination techniques, which exploits ranking capabilities of individual features by reducing the set of possible matching candidates at each iteration, and we compare its performance with parallel schemes. Using this technique, both a reduction of misclassification and processing time in identification mode will be shown to be feasible for a single-sensor hand-based biometric system.

Keywords

Multibiometrics serial combination hand biometrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Z., Wang, R., Pan, K., Li, S., Zhang, P.: Fusion of near infrared face and iris biometrics. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 172–180. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Rowe, R., Uludag, U., Demirkus, M., Parthasaradhi, S., Jain, A.: A multispectral whole-hand biometric authentication system. In: Proc. Biometric Symp. (2007)Google Scholar
  3. 3.
    Uhl, A., Wild, P.: Personal recognition using single-sensor multimodal hand biometrics. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 396–404. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Nandakumar, K., Chen, Y., Jain, A., Dass, S.: Quality-based score level fusion in multibiometric systems. In: Proc. 18th Int. Conf. Pattern Recogn (ICPR), pp. 473–476 (2006)Google Scholar
  5. 5.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Int. 20(3), 226–239 (1998)Google Scholar
  6. 6.
    You, J., Kong, W.K., Zhang, D., Cheung, K.: On hierarchical palmprint coding with multiple features for personal identification in large databases. IEEE Trans. Circ. Syst. Video Techn. 14(2), 234–243 (2004)Google Scholar
  7. 7.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)Google Scholar
  8. 8.
    Kumar, A., Zhang, D.: Combining fingerprint, palmprint and hand-shape for user authentication. In: Proc. 18th Int. Conf. Pattern Recogn (ICPR), pp. 549–552 (2006)Google Scholar
  9. 9.
    Kumar, A., Wong, D., Shen, H., Jain, A.: Personal verification using palmprint and hand geometry biometric. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 668–678. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    NIST: Fingerprint image software 2 (2004), http://fingerprint.nist.gov/NFIS
  11. 11.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2003)Google Scholar
  12. 12.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)Google Scholar
  13. 13.
    Ribaric, S., Fratric, I.: A biometric identification system based on eigenpalm and eigenfinger features. IEEE Trans. Pat. Anal. Mach. Int. 27(11), 1698–1709 (2005)Google Scholar
  14. 14.
    Xu, L., Krzyzak, A., Suen, C.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Systems, Man, and Cybernetics 22(3), 418–435 (1992)Google Scholar
  15. 15.
    Ross, A., Nandakumar, K., Jain, A.: Handbook of Multibiometrics. Springer, Secaucus (2006)Google Scholar
  16. 16.
    Bolle, R., Connell, J., Pankanti, S., Ratha, N., Senior, A.: Guide to Biometrics. Springer, New York (2004)Google Scholar
  17. 17.
    Melnik, O., Vardi, Y., Zhang, C.H.: Mixed group ranks: preference and confidence in classifier combination. IEEE Trans. Pat. Anal. Mach. Int. 26(8), 973–981 (2004)Google Scholar
  18. 18.
    Faundez-Zanuy, M.: Data fusion in biometrics. IEEE Aerosp. Electr. Syst. Mag. 20(1), 34–38 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Uhl
    • 1
  • Peter Wild
    • 1
  1. 1.Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations