Robust Biometric System Using Palmprint for Personal Verification

  • G. S. Badrinath
  • Phalguni Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

This paper describes a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The extracted palmprint region is robust to hand translation and rotation on the scanner. The system is tested on IITK database and PolyU database. It has FAR 0.02%, FRR 0.01% and an accuracy of 99.98% at original size. The system addresses the robustness in the context of scale, rotation and occlusion of palmprint. The system performs at accuracy more than 99% for scale, more than 98% for rotation, and more than 99% for occlusion. The robustness and accuracy suggest that it can be a suitable system for civilian and high-security environments.

Keywords

Robust Scale Occlusion Rotation Translation Scanner 

References

  1. 1.
    Ribaric, S., Fratric, I.: A biometric identification system based on Eigenpalm and Eigenfinger features. IEEE Trans. on Pattern Analysis Machine Intelligence 27(11), 1698–1709 (2005) Google Scholar
  2. 2.
    Zhang, D., Kong, W.K., You, J., Wong, M.: Online palmprint identification. IEEE Transaction on Pattern Analysis and Machine Intelligence 25(9), 1041–1050 (2003) Google Scholar
  3. 3.
    Kumar, A., Zhang, A.: Personal recognition using hand shape and texture. IEEE Transaction on Image Processing 15(8), 2454–2461 (2006) Google Scholar
  4. 4.
    Zhang, L., Zhang, D.: Characterization of Palmprints by Wavelet Signatures via Directional Context Modeling. IEEE Transaction on Systems, Man, and Cybernetics 34(3), 1335–1347 (2004) Google Scholar
  5. 5.
    Wang, X., Gong, H., Zhang, H.: Palmprint Identification using Boosting Local Binary Pattern. In: 18th International Conference on Pattern Recognition, vol. 3, pp. 503–506 (2006) Google Scholar
  6. 6.
    Zhang, D., Shu, W.: Two novel characteristics in palmprint verification: Datum point invariance and line feature matching. Pattern Recognition 32(4), 691–702 (1999) Google Scholar
  7. 7.
    Han, C.-C., Cheng, H.-L., Lin, C.-L., Fan, K.-C.: Personal authentication using palmprint features. Pattern Recognition 36, 371–381 (2003) Google Scholar
  8. 8.
    International Committee for Information Technology Standards. Technical Committee M1-Biometrics (2005), http://www.incits.org/tc_home/m1.htm Google Scholar
  9. 9.
    The PolyU palmprint database, http://www.comp.polyu.edu.hk/~biometrics Google Scholar
  10. 10.
    Wenxin, L., Zhang, D., Xu, Z.: Palmprint Identification by Fourier Transform. Intl. Journal of Pattern Recognition and Artificial Intelligence 16(4), 417–432 (2002) Google Scholar
  11. 11.
    Badrinath, G.S., Gupta, P.: An Efficient Multi-algorithmic Fusion System based on Palmprint for Personnel Identification. In: Intl. Conf. on Advanced Computing, pp. 759–764 (2007) Google Scholar
  12. 12.
    Ross, A., Jain, A.K.: Information fusion in biometrics. Pattern Recognition Letters, 2115–2125 (2003) Google Scholar
  13. 13.
    Pavlidis, T.: Algorithms for graphics and image processing. Springer, Heidelberg (1982) Google Scholar
  14. 14.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) Google Scholar
  15. 15.
    Lu, G., Wang, K., Zhang, D.: Wavelet based independent component analysis for palmprint identification. In: Intl. conf. on Machine Learning and Cybernetics, pp. 3547–3550 (2004) Google Scholar
  16. 16.
    Wang, Y., Ruan, Q.: Kernel Fisher Discriminant Analysis for Palmprint Recognition. In: 18th Intl. Conf. on Pattern Recognition, pp. 457–460 (2006) Google Scholar
  17. 17.
    Bay, H., Fasel, B., Van, L.: Interactive museum guide: Fast and robust recognition of museum objects. In: First Intl. workshop on mobile vision (2006) Google Scholar
  18. 18.
    Murillo, A.C., Guerrero, J.J., Sagues, C.: SURF features for efficient robot localization with omnidirectional images. In: IEEE Intl. Conf. on Robotics and Automation, pp. 3901–3907 (2007) Google Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 511–518 (2001) Google Scholar
  20. 20.
    Shu, W., Zhang, D.: Automated Personal Identification by Palmprint. Optical Engineering 37(8), 2359–2362 (1998) Google Scholar
  21. 21.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005) Google Scholar
  22. 22.
    Independent Testing of Iris Recognition Technology Final Report. International Biometric Group (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. S. Badrinath
    • 1
  • Phalguni Gupta
    • 1
  1. 1.Dept. of Computer Science and EngineeringIndain Institute of Technology KanpurIndia

Personalised recommendations