Entropy of the Retina Template

  • A. Arakala
  • J. S. Culpepper
  • J. Jeffers
  • A. Turpin
  • S. Boztaş
  • K. J. Horadam
  • A. M. McKendrick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

We compare two vessel extraction methods for creation of a retina template, using a database of 20 images of normal retinas. Each vessel in a well defined region is represented by a three dimensional feature, from which a retina template is built. Based on the sample distributions, we propose a preliminary theoretical model to predict the entropy of a retina template. We analyse by experimental and theoretical means the entropy present, and infer that entropy from our retina template compares sufficiently favourably with that of a minutia-based fingerprint template to warrant further study.

Keywords

Vessel Segment Fundus Image Biometric Template Match Threshold Retinal Fundus Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arakala, A., Horadam, K.J., Boztas, S.: Practical Considerations for Secure Minutiae Based Templates. In: Proc. 2008 Biometrics Symposium, Tampa, Florida, September 23-25, pp. 53–58. IEEE Press, Los Alamitos (2008)Google Scholar
  2. 2.
    Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Rapid automated tracing and feature extraction from live high-resolution retinal fundus images using direct exploratory algorithms. IEEE Trans. Inform. Technol. Biomed. 3(2), 125–138 (1999)Google Scholar
  3. 3.
    Daugman, J.: Probing the Uniqueness and Randomness of IrisCodes: Results From 200 Billion Iris Pair Comparisons. Proc. IEEE 94(11), 1927–1935 (2006)Google Scholar
  4. 4.
    Farzin, H., Abrishami-Moghaddam, H., Moin, M.: A Novel Retinal Identification System. EURASIP Journal on Advances in Signal Processing, Article ID 280635, 10 (2008), doi:10.1155/2008/280635Google Scholar
  5. 5.
    Fritzsche, K., Can, A., Shen, H., Tsai, C., Turner, J., Tanenbuam, H., Stewart, C., Roysam, B.: Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images. In: Suri, J.S., Laxminarayan, S. (eds.) State-of-The-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, pp. 225–298. Academic Press, London (2003)Google Scholar
  6. 6.
    Hill, R.: Retinal Identification. In: Jain, A.K., Bolle, R.M. (eds.) Biometrics: Personal Identification in Networked Society, pp. 123–142. Kluwer Academic Press, Boston (1999)Google Scholar
  7. 7.
    Hill, R.: Apparatus and method for identifying individuals through their retinal vasculature patterns, US Patent No. 4109237 (1978)Google Scholar
  8. 8.
    Hill, R.: Rotating beam ocular identification apparatus and method, US Patent No. 4393366 (1983)Google Scholar
  9. 9.
    Marino, C., Penedo, M., Carreira, M., Gonzalez, F.: Retinal angiography based authentication. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 306–313. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Ortega, M., Penedo, M., Marino, C., Carreira, M.: Similarity metrics analysis for feature point based retinal authentication. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 1023–1032. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Sofka, M., Stewart, C.V.: Retinal Vessel Centerline Extraction Using Multiscale Matched Filters, Confidence and Edge Measures. IEEE Transactions on Medical Imaging 25(12), 1531–1546 (2006)Google Scholar
  12. 12.
    Simon, C., Goldstein, I.: A new scientific method of identification. New York State Journal of Medicine 35(18), 901–906 (1935)Google Scholar
  13. 13.
    Tabataee, H., Fard, A., Jafariani, H.: A novel human identifier system using retina image and fuzzy clustering approach. In: Proceedings of the 2nd IEEE International Conference on Information and Communications Technologies (ICTTA 2006), Damascus, Syria, pp. 1031–1036 (April 2006)Google Scholar
  14. 14.
    Tower, P.: The fundus oculi in monozygotic twins: report of six pairs of identical twins. Archives of Ophthalmology 54, 225–239 (1955)Google Scholar
  15. 15.
    Xu, Z., Guo, X., Hu, X., Cheng, X.: The blood vessel recognition of ocular fundus. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.) ICMLC 2005. LNCS, vol. 3930, pp. 4493–4498. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Xu, Z., Guo, X., Hu, X., Chen, X., Wang, Z.: The identification and recognition based on point for blood vessel of ocular fundus. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp. 770–776. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Zhu, Y., Dass, S.C., Jain, A.K.: Statistical models for assessing the individuality of fingerprints. IEEE Transactions on Information Forensics and Security 2(3), 391–401 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Arakala
    • 1
  • J. S. Culpepper
    • 1
  • J. Jeffers
    • 1
  • A. Turpin
    • 1
  • S. Boztaş
    • 1
  • K. J. Horadam
    • 1
  • A. M. McKendrick
    • 2
  1. 1.RMIT UniversityMelbourneAustralia
  2. 2.University of MelbourneParkvilleAustralia

Personalised recommendations