Noisy Iris Verification: A Modified Version of Local Intensity Variation Method

  • Nima Tajbakhsh
  • Babak Nadjar Araabi
  • Hamid Soltanian-zadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)

Abstract

In this paper, a modified version of local intensity variation method is proposed to enhance the efficiency of identification system while dealing with degradation factors presented in iris texture. Our contributions to improve the robustness and performance of local intensity variation method consist of defining overlapped patches to compensate for deformation of texture, performing a de-noising strategy to remove high frequency components of intensity signals, proposing to add a coding strategy, and combining the dissimilarity values obtained from intensity signals. Experimental results on UBIRIS database demonstrate the effectiveness of proposed method when facing low quality images. To assess the robustness of proposed method to noise, lack of focus, and motion blur, we simulate these degradation factors that may occur during image acquisition in non-ideal conditions. Our results on a private database show that verification performance remains acceptable while the original method [11] suffers from a dramatic degradation.

Keywords

Noisy iris recognition Score fusion Robustness evaluation 

References

  1. 1.
    Proença, H., Alexandre, L.A.: UBIRIS: A noisy iris image database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005), http://iris.di.ubi.pt Google Scholar
  2. 2.
    Krichen, E., Chenafa, M., Garcia-Salicetti, S., Dorizzi, B.: Color-Based Iris Verification. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 997–1005. Springer, Heidelberg (2007) Google Scholar
  3. 3.
    Hosseini, S.M., Araabi, B.N., Soltanian-Zadeh, H.: Shape Analysis of Stroma for Iris Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 790–799. Springer, Heidelberg (2007) Google Scholar
  4. 4.
    Proença, H., Alexandre, L.A.: Iris Recognition: An Entropy-Based Coding Strategy Robust to Noisy Imaging Environments. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 621–632. Springer, Heidelberg (2007) Google Scholar
  5. 5.
    Lee, J., Huang, P.S., Chang, C., Tu, T.: A Novel Approach for Iris Recognition Using Local Edge Patterns. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 479–488. Springer, Heidelberg (2007) Google Scholar
  6. 6.
    Proença, H., Alexandre, L.A.: Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures. IEEE Transaction on Pattern Analysis and Machine Intelligence 29(4), 607–612 (2007) Google Scholar
  7. 7.
    Bashir, F., Casaverde, P., Usher, D., Friedman, M.: Eagle-EyesTM: A System for Iris Recognition at a Distance. In: Proceeding of IEEE Conference on Technologies for Homeland Security, pp. 426–431 (2008) Google Scholar
  8. 8.
    Tajbakhsh, N., Araabi, B.N., Soltanian-zadeh, H.: An Intelligent Decision Combiner Applied to Noncooperative Iris Recognition. In: IEEE Proceedings of the 11th International Conference on Information Fusion, 6 pages (2008) Google Scholar
  9. 9.
    Tajbakhsh, N., Araabi, B.N., Soltanian-zadeh, H.: Feature Fusion as a Practical Solution toward Noncooperative Iris Recognition. In: IEEE Proceedings of the 11th International Conference on Information Fusion, 7 pages (2008) Google Scholar
  10. 10.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recognition by Characterizing Key Local Variations. IEEE Transactions on Image Processing 13(6), 739–750 (2004) Google Scholar
  11. 11.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Local intensity variation analysis for iris recognition. Pattern recognition 37(6), 1287–1298 (2004) Google Scholar
  12. 12.
    Proença, H.: Towards Non-Cooperative Biometric Iris Recognition. University of Beira Interior, Phd Thesis (January 2007) ISBN: 978-972-99648-2-4 Google Scholar
  13. 13.
    Poursaberi, A., Araabi, B.N.: A Half-Eye Wavelet Based Method for Iris Recognition. In: ISDA 2005, Proceeding of 5th International Conference on Intelligent Systems Design and Applications, pp. 262–267 (2005) Google Scholar
  14. 14.
    Brunelli, R., Alavigna, D.: Person Identification Using Multiple Cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(10), 955–966 (1995) Google Scholar
  15. 15.
    Fierrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J., Bigun, J.: Discriminative Multimodal Biometric Authentication based on Quality Measures. Pattern Recognition 38(5), 777–779 (2005) Google Scholar
  16. 16.
    Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.K.: Likelihood Ratio-Based Biometric Score Fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 342–347 (2008) Google Scholar
  17. 17.
    Prabhakar, S., Jain, A.K.: Decision-level Fusion in Fingerprint Verification. Pattern Recognition 35(4), 861–874 (2002) Google Scholar
  18. 18.
    Griffin, P.: Optimal Biometric Fusion for Identity Verification. Identix Research, Technical Report RDNJ-03-0064 (2004) Google Scholar
  19. 19.
    Poursaberi, A., Araabi, B.N.: Iris Recognition for Partially Occluded Images: Methodology and Sensitivity Analysis. EURASIP Journal on Advances in Signal Processing 2007(1), 12 pages (2007) Google Scholar
  20. 20.
    Rakshit, S., Monro, D.M., Zhang, D.: DCT-Based Iris Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 586–595 (2007) Google Scholar
  21. 21.
    Ahmadi, H., Pousaberi, A., Azizzadeh, A., Kamarei, M.: An Efficient Iris Coding Based on Gauss-Laguerre Wavelets. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 917–926. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nima Tajbakhsh
    • 1
  • Babak Nadjar Araabi
    • 1
    • 2
  • Hamid Soltanian-zadeh
    • 1
    • 2
    • 3
  1. 1.Control and Intelligent Processing Center of Excellence, School of Electrical and Computer EngineeringUniversity of TehranIran
  2. 2.School of Cognitive SciencesIPMTehranIran
  3. 3.Radiology Image Analysis Lab.Henry Ford Health SystemDetroitUSA

Personalised recommendations