Automatic Database Creation and Object’s Model Learning

  • Nguyen Dang Binh
  • Thuy Thi Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5465)


This paper proposes a new framework to automatically generate visual object database meanwhile efficiently learn the object’s model. The system is of important need for the problems of object detection and recognition. Our main idea is to acquire the huge amount of video data actively, and seeks out opportunities to autonomously exploit information from object samples. We employ autonomous learning approach based on online boosting technique, which allows to combine an object detector trained on a single initialized input image with tracking to extract object samples for learning. The autonomous learning process with interactive learning strategy allows to adaptively improve the learning object model while generating informative samples. Our method allows to generate thousands of object samples within hours from large video databases or from live camera, thus saving time and labor’s efforts. We will show that the proposed method can extracts well-localized, diverse appearances of object examples from video sequence through only one initialized input sample, and builds robust object model. In addition to requiring very little human intervention, a significant benefit of this method is that it does not require pre-training. In the experiments, the approach is evaluated in detail for creating data sets and learning for the problems of human hand gesture recognition and face detection. In addition, to show the generality, results for different objects are also presented.


Database creation object’s model learning online boosting autonomous learning object detection pattern recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, IEEE, vol. 1, pp. 260–267 (2006)Google Scholar
  2. 2.
    Hertz, T., Bar-Hilled, A., Weinshall, D.: Learning distance functions for image retrieval. In: Proc. CVPR, IEEE, vol. 2, pp. 570–577 (2004)Google Scholar
  3. 3.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, IEEE, vol. I, pp. 511–518 (2001)Google Scholar
  4. 4.
    Tieu, K., Viola, P.: Boosting image retrieval. In: Proc. CVPR, IEEE, pp. 228–235 (2000)Google Scholar
  5. 5.
    Rowley, H., Baluja, S., Kanade, T.: Neural Network-based Face Detection. IEEE Trans. On PAMI 20(1), 23–38 (1998)CrossRefGoogle Scholar
  6. 6.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods - Support Vector Learning (1998)Google Scholar
  7. 7.
    Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: Proc. IEEE CVPR, vol. I, pp. 626–633 (2003)Google Scholar
  8. 8.
    Nair, V., Clark, J.: An unsupervised, online learning framework for moving object detection. In: Proc. IEEE CVPR, vol. II, pp. 317–324 (2004)Google Scholar
  9. 9.
    Sung, K., Poggio, T.: Example-based learning for view-based face detection. IEEE Trans. on PAMI 20(1), 39–51 (1998)CrossRefGoogle Scholar
  10. 10.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Subtraction. In: Proc. of ICCV, pp. 255–261 (1999)Google Scholar
  11. 11.
    Elgamal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Substraction. In: Proc. of ECCV (2000)Google Scholar
  12. 12.
    Sivic, J., Schaffalitzky, F., Zisserman, A.: Object level grouping for video shots. In: Proc. ECCV, vol. I, pp. 85–98 (2004)Google Scholar
  13. 13.
    Sivic, J., Everingham, M., Zisserman, A.: Person spotting: Video shot retrieval for face sets. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 226–236. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Hewitt, R., Belongie, S.: Active learning in face recognition: Using tracking to build a face model. In: Proc. IEEE Workshop on Vision for Human-Computer Interaction (2006)Google Scholar
  16. 16.
    Wu, B., Nevatia, R.: Improving part based object detection by unsupervised, online boosting. In: Proc. IEEE Computer vision and Pattern Recognition (2007)Google Scholar
  17. 17.
    Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: Proc. IEEE CVPR (2005)Google Scholar
  18. 18.
    Oza, N.C., Russell, S.: Experimental comparisons of online and batch versions of bagging and boosting. In: Proc. ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining (2001)Google Scholar
  19. 19.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings, CVPR, San Diego, CA, USA, vol. 1, pp. 886–893 (2005)Google Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kolsch, M., Turk, M.: Fast 2D Hand Tracking with Flocks of Features and Multi-Cue Integration. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, pp. 158–166 (2004)Google Scholar
  22. 22.
    Ross, D., Lim, J., Lin, R., Yang, M.H.: Incremental Learning for Robust Visual Tracking, the International Journal of Computer Vision. Special Issue: Learning for Vision (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nguyen Dang Binh
    • 1
  • Thuy Thi Nguyen
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyAustria

Personalised recommendations