Advertisement

Improving Energy-Efficiency of Grid Computing Clusters

  • Tapio Niemi
  • Jukka Kommeri
  • Kalle Happonen
  • Jukka Klem
  • Ari-Pekka Hameri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5529)

Abstract

Electricity is a significant cost in high performance computing. It can easily exceed the cost of hardware during hardware lifetime. We have studied energy efficiency in a grid computing cluster and noticed that optimising the system configuration can both decrease energy consumption per job and increase throughput. The goal with the proposed saving scheme was that it is easy to implement in normal HPC clusters. Our tests showed that the savings can be up to 25%. The tests were done with real-life high-energy physics jobs.

Keywords

Electricity Consumption System Throughput Computing Node Local Disk Dynamic Voltage Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, N., Gurumurthi, S., Sivasubramaniam, A., Vijaykrishnan, N., Kandemir, M., Irwin, M.J.: Energy-performance trade-offs for spatial access methods on memory-resident data. The VLDB Journal 11(3), 179–197 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Barr, K.C., Asanović, K.: Energy-aware lossless data compression. ACM Trans. Comput. Syst. 24(3), 250–291 (2006)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Chen, G., Shetty, R., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Wolczko, M.: Tuning garbage collection for reducing memory system energy in an embedded java environment. Trans. on Embedded Computing Sys. 1(1), 27–55 (2002)CrossRefGoogle Scholar
  5. 5.
    Conner, S., Link, G.M., Tobita, S., Irwin, M.J., Raghavan, P.: Energy/performance modeling for collective communication in 3-d torus cluster networks. In: SC 2006: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, p. 138. ACM, New York (2006)Google Scholar
  6. 6.
    Sun Grid Engine. Gridengine - project home (2009), http://gridengine.sunsource.net
  7. 7.
    Essary, D., Amer, A.: Predictive data grouping: Defining the bounds of energy and latency reduction through predictive data grouping and replication. Trans. Storage 4(1), 1–23 (2008)CrossRefGoogle Scholar
  8. 8.
    CMS Collaboration, Adolphi, R., et al.: The CMS experiment at the CERN LHC. Journal of Instrumentatio 3 (2008)Google Scholar
  9. 9.
    CMS Experiment. CMSSW Application Framework, https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookCMSSWFramework
  10. 10.
    Fei, Y., Ravi, S., Raghunathan, A., Jha, N.K.: Energy-optimizing source code transformations for operating system-driven embedded software. Trans. on Embedded Computing Sys. 7(1), 1–26 (2007)CrossRefGoogle Scholar
  11. 11.
    Ge, R., Feng, X., Cameron, K.W.: Performance-constrained distributed dvs scheduling for scientific applications on power-aware clusters. In: SC 2005: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, Washington, DC, USA, p. 34. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  12. 12.
    Herr, W., Zorzano, M.P.: Coherent dipole modes for multiple interaction regions. Technical report, LHC Project Report 461 (2001)Google Scholar
  13. 13.
    Jiang, C., Chen, G.: Convergent sparsedt topology control protocol in dense sensor networks. In: InfoScale 2007: Proceedings of the 2nd international conference on Scalable information systems, Brussels, Belgium, pp. 1–8. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2007)Google Scholar
  14. 14.
    Kappiah, N., Freeh, V.W., Lowenthal, D.K.: Just in time dynamic voltage scaling: Exploiting inter-node slack to save energy in mpi programs. In: SC 2005: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, Washington, DC, USA, p. 33. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  15. 15.
    Li, X., Li, Z., Zhou, Y., Adve, S.: Performance directed energy management for main memory and disks. Trans. Storage 1(3), 346–380 (2005)CrossRefGoogle Scholar
  16. 16.
    Li, Z., Wang, C., Xu, R.: Computation offloading to save energy on handheld devices: a partition scheme. In: CASES 2001: Proceedings of the 2001 international conference on Compilers, architecture, and synthesis for embedded systems, pp. 238–246. ACM, New York (2001)Google Scholar
  17. 17.
  18. 18.
    EGEE project (2009), http://www.glite.org
  19. 19.
    Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SenSys 2006: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 265–278. ACM, New York (2006)Google Scholar
  20. 20.
    Schiele, G., Becker, C., Rothermel, K.: Energy-efficient cluster-based service discovery for ubiquitous computing. In: EW11: Proceedings of the 11th workshop on ACM SIGOPS European workshop, p. 14. ACM, New York (2004)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems. ACM Comput. Surv. 37(3), 195–237 (2005)CrossRefGoogle Scholar
  23. 23.
    Yuan, W., Nahrstedt, K.: Integration of dynamic voltage scaling and soft real-time scheduling for open mobile systems. In: NOSSDAV 2002: Proceedings of the 12th international workshop on Network and operating systems support for digital audio and video, pp. 105–114. ACM, New York (2002)Google Scholar
  24. 24.
    Zhang, C., Vahid, F., Najjar, W.: A highly configurable cache architecture for embedded systems. SIGARCH Comput. Archit. News 31(2), 136–146 (2003)CrossRefGoogle Scholar
  25. 25.
    Zhang, W., Hu, J.S., Degalahal, V., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.: Reducing instruction cache energy consumption using a compiler-based strategy. ACM Trans. Archit. Code Optim. 1(1), 3–33 (2004)CrossRefGoogle Scholar
  26. 26.
    Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., Wilkes, J.: Hibernator: helping disk arrays sleep through the winter. In: SOSP 2005: Proceedings of the twentieth ACM symposium on Operating systems principles, pp. 177–190. ACM, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tapio Niemi
    • 1
  • Jukka Kommeri
    • 1
  • Kalle Happonen
    • 1
  • Jukka Klem
    • 1
  • Ari-Pekka Hameri
    • 1
  1. 1.Helsinki Institute of Physics, Technology Programme, CERNSwitzerland

Personalised recommendations