Assessing the Power of a Visual Modeling Notation – Preliminary Contemplations on Designing a Test –

  • Dominik Stein
  • Stefan Hanenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5421)


This paper reports on preliminary thoughts which have been conducted in designing an empirical experiment to assess the comprehensibility of a visual notation in comparison to a textual notation. The paper sketches shortly how a corresponding hypothesis could be developed. Furthermore, it presents several recommendations that aim at the reduction of confounding effects. It is believed that these recommendations are applicable to other experiments in the domain of MDE, too. Finally, the paper reports on initial experiences that have been made while formulating test questions.


Visual Representation Textual Representation Empirical Experiment Java Code Textual Notation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akehurst, D., Howells, G., McDonal-Maier, K.: Implementing Associations: UML 2.0 to Java 5. Software and Systems Modeling (SoSyM) 6(1), 3–35 (2007)CrossRefGoogle Scholar
  2. 2.
    Ambler, S.W.: The Elements of UML 2.0 Style. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  3. 3.
    Andriyevska, O., Dragan, N., Simoes, B., Maletic, J.I.: Evaluating UML Class Diagram Layout based on Architectural Importance. In: Proc. of VISSOFT 2005, pp. 14–19. IEEE, Los Alamitos (2005)Google Scholar
  4. 4.
    Bortz, J., Döring, N.: Forschungsmethoden und Evaluation für Sozialwissenschaftler (Research Methods and Evaluation for Social Scientist). Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Burkhardt, J.-M., Détienne, F., Wiedenbeck, S.: Object-Oriented Program Comprehension: Effect of Expertise, Task and Phase. Empirical Software Engineering 7(2), 115–156 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Davies, S.P.: Expertise and the Comprehension of Object-Oriented Programs. In: Proc. of Workshop of the Psychology of Programming Interest Group, pp. 61–66 (2000)Google Scholar
  7. 7.
    Eichelberger, H.: Nice Class Diagrams Admit Good Design? In: Proc. of SoftVis 2003, pp. 159–167. ACM, New York (2003)Google Scholar
  8. 8.
    Gabriel, R.: Patterns of Software - Tales from the Software Community. Oxford University Press, Oxford (1996)Google Scholar
  9. 9.
    Génova, G., del Castillo, C.R., Llorens, J.: Mapping UML Associations into Java Code. Journal of Object Technology (JOT) 2(5), 135–162 (2003)CrossRefGoogle Scholar
  10. 10.
    Gessenharter, D.: Mapping the UML2 Semantics of Associations to a Java Code Generation Model. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 813–827. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Green, T.: Conditional Program Statements and their Comprehensibility to Professional Programmers. Journal of Occupational Psychology 50(2), 93–109 (1977)CrossRefGoogle Scholar
  12. 12.
    Green, T., Petre, M., Bellamy, R.K.E.: Comprehensibility of Visual and Textual Programs: A Test of Superlativism Against the ‘Match-Mismatch’ Conjecture. In: Empirical Studies of Programmers: 4th Workshop, pp. 121–146 (1991)Google Scholar
  13. 13.
    Hendrix, T.D., Cross II, J.H., Maghsoodloo, S.: The Effectiveness of Control Structure Diagrams in Source Code Comprehension Activities. IEEE Trans. Software Eng. 28(5), 463–477 (2002)CrossRefGoogle Scholar
  14. 14.
    Henney, K.: Overload 45 (October 2001),
  15. 15.
    Krebs, R.: Die wichtigsten Regeln zum Verfassen guter Multiple-Choice Fragen (Most Important Rules for Writing Good Multiple-Choice Questions), IAWF, Berlin (1997)Google Scholar
  16. 16.
    McGuinness, C.: Problem Representation: The Effects of Spatial Arrays. Memory & Cognition 14(3), 270–280 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program Indentation and Comprehensibility. Comm. of the ACM 26(11), 861–867 (1983)CrossRefGoogle Scholar
  18. 18.
    Moher, T.G., Mak, D.C., Blumenthal, B., Leventhal, L.M.: Comparing the Comprehensibility of Textual and Graphical Programs: The Case of Petri-Nets. In: Empirical Studies of Programmers: 5th Workshop, pp. 137–161 (1993)Google Scholar
  19. 19.
    Neary, D.S., Woodward, M.R.: An Experiment to Compare the Comprehensibility of Textual and Visual Forms of Algebraic Specifications. Journal of Visual Languages and Computing 13(2), 149–175Google Scholar
  20. 20.
    Object Management Group (OMG), UML 2.1.1 Superstructure Specification, Document formal/2007-02-05Google Scholar
  21. 21.
    Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Commun. of the ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  22. 22.
    Popper, K.: Logik der Forschung (The Logic of Scientific Discovery, 1959) (1934)Google Scholar
  23. 23.
    Prechelt, L.: Kontrollierte Experimente in der Softwaretechnik (Controlled Experiments in Software Engineering). Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: UML Class Diagram Syntax: An Empirical Study of Comprehension. In: Proc. of Australasian Symposium on Information Visualisation, pp. 113–120 (2001)Google Scholar
  25. 25.
    Purchase, H.C., Colpoys, L., McGill, M., Carrington, D.: UML Collaboration Diagram Syntax: An Empirical Study of Comprehension. In: Proc. of VISSOFT 2002, pp. 13–22. IEEE, Los Alamitos (2002)Google Scholar
  26. 26.
    Rambally, G.K.: The Influence of Color on Program Readability and Comprehensibility. In: Proc. of SIGCSE 1986, pp. 173–181. ACM, New York (1986)Google Scholar
  27. 27.
    Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: The Role of Experience and Ability in Comprehension Tasks supported by UML Stereotypes. In: Proc. of ICSE 2007, pp. 375–384. IEEE, Los Alamitos (2007)Google Scholar
  28. 28.
    Scanlan, D.A.: Structured Flowcharts Outperform Pseudocode: An Experimental Comparison. IEEE Software 6(5), 28–36 (1989)CrossRefGoogle Scholar
  29. 29.
    Shneiderman, B., Mayer, R., McKay, D., Heller, P.: Experimental Investigations of the Utility of Detailed Flowcharts in Programming. Comm. of the ACM 20(6), 373–381 (1977)CrossRefGoogle Scholar
  30. 30.
    Sun, Code Conventions for the Java Programming Language, April 20 (1999),
  31. 31.
    Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dominik Stein
    • 1
  • Stefan Hanenberg
    • 1
  1. 1.Universität Duisburg-EssenGermany

Personalised recommendations