Automated Detection of Load Changes in Large-Scale Networks

  • Felipe Mata
  • Javier Aracil
  • Jose Luis García-Dorado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5537)


This paper presents a new online algorithm for automated detection of load changes, which provides statistical evidence of stationary changes in traffic load. To this end, we perform continuous measurements of the link load, then look for clusters in the dataset and finally apply the Behrens-Fisher hypothesis testing methodology. The algorithm serves to identify which links deviate from the typical load behavior. The rest of the links are considered normal and no intervention of the network manager is required. Due to the automated selection of abnormal links, the Operations Expenditure (OPEX) is reduced. The algorithm has been applied to a set of links in the Spanish National Research and Education Network (RedIRIS) showing good results.


Load change capacity planning Behrens-Fisher problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts, L.G.: Beyond moore’s law: Internet growth trends. Computer (2000)Google Scholar
  2. 2.
    Paxson, V.: Growth trends in wide-area tcp connections. IEEE Network 8(4), 8–17 (1994)CrossRefGoogle Scholar
  3. 3.
    Odlyzko, A.M.: Internet traffic growth: sources and implications. In: Proceedings of SPIE, vol. 5247, pp. 1–15 (2003)Google Scholar
  4. 4.
    Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufmann Publishers Inc., San Francisco (2004)zbMATHGoogle Scholar
  5. 5.
    Papagiannaki, K., Taft, N., Zhang, Z., Diot, C.: Long-term forecasting of Internet backbone traffic. IEEE Transactions on Neural Networks 16(5), 1110–1124 (2005)CrossRefGoogle Scholar
  6. 6.
    D’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Managing capacity for telecommunications networks under uncertainty. IEEE/ACM Transactions on Networking 10(4), 579–588 (2002)CrossRefGoogle Scholar
  7. 7.
    Fraleigh, C., Tobagi, F., Diot, C.: Provisioning IP backbone networks to support latency sensitive traffic. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2003, vol. 1 (2003)Google Scholar
  8. 8.
    van den Berg, H., Mandjes, M., van de Meent, R., Pras, A., Roijers, F., Venemans, P.: QoS-aware bandwidth provisioning for IP network links. Computer Networks 50(5), 631–647 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kyriakopoulos, K.G., Parish, D.J.: Automated detection of changes in computer network measurements using wavelets. In: Proceedings of 16th International Conference on Computer Communications and Networks (ICCCN), pp. 1223–1227 (2007)Google Scholar
  10. 10.
    Choi, B., Park, J., Zhang, Z.: Adaptive random sampling for load change detection. In: Proceedings of the 2002 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pp. 272–273. ACM, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Oetiker, T., Rand, D.: MRTG-The Multi Router Traffic Grapher. In: Proceedings of the 12th USENIX conference on System administration, pp. 141–148 (1998)Google Scholar
  12. 12.
    Kilpi, J., Norros, I.: Testing the Gaussian approximation of aggregate traffic. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment, pp. 49–61 (2002)Google Scholar
  13. 13.
    van de Meent, R., Mandjes, M.R.H., Pras, A.: Gaussian traffic everywhere? In: Proceedings of IEEE International Conference on Communications (ICC), Istanbul, Turkey, vol. 2, pp. 573–578 (2006)Google Scholar
  14. 14.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (2001)zbMATHGoogle Scholar
  15. 15.
    Anderson, T.W., Wilbur, T.: An introduction to multivariate statistical analysis. Wiley, New York (1958)Google Scholar
  16. 16.
    Johnson, R.A., Wichern, D.W.: Applied multivariate statistical analysis. Prentice-Hall International Editions (1992)Google Scholar
  17. 17.
    Durrett, R.: Probability: Theory and Examples. Duxbury Press, Boston (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Felipe Mata
    • 1
  • Javier Aracil
    • 1
  • Jose Luis García-Dorado
    • 1
  1. 1.Universidad Autónoma de MadridSpain

Personalised recommendations