Advertisement

Planning Actions with Social Consequences

  • Hsueh-Min Chang
  • Von-Wun Soo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5044)

Abstract

In an environment with multiple autonomous agents, the performance of an action may have effects on the beliefs and goals of the witnessing agents in addition to the direct effects. The awareness of such mental effects is critical for the success of a plan in multi-agent environments. This paper provides a formulation of social plans, and show that social planning can be done by including models of other agents’ minds in the planning domain. A social planning agent is constructed based on automatic generation of PDDL (Planning Domain Description Language) domains from knowledge about other agents.

Keywords

Belief Revision State Belief Planning Domain Social Planning Automate Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barros, L.M., Musse, S.R.: Planning algorithms for interactive storytelling. Comput. Entertain. 5 (2007)Google Scholar
  2. 2.
    Bibel, W.: Let’s Plan it Deductively! Artif. Intell. 103, 183–208 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Castelfranchi, C.: Modeling Social Actions for AI agents. Artif. Intel. 103, 157–182 (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Chang, P.H.-M., Chien, Y.-H., Kao, E.C.-C., Soo, V.-W.: A Knowledge-Based Scenario Framework to Support Intelligent Planning Characters. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS, vol. 3661, pp. 134–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Coles, A.I., Smith, A.J.: Marvin: Macro-actions from reduced versions of the instance. In: IPC4 Booklet, Fourteenth International Conference on Automated Planning and Scheduling (2004)Google Scholar
  6. 6.
    Cox, J., Durfee, E.H.: An Efficient Algorithm for Multiagent Plan Coordination. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pp. 828–835. ACM Press, NY (2005)CrossRefGoogle Scholar
  7. 7.
    Edelkamp, S., Hoffmann, J.: PDDL2.2: The Language for the Classical Part of the 4th International Planning Competition. Technical Report 195. Albert-Ludwigs-Universität, Institut für Informatik, Freiburg, Germany (2004)Google Scholar
  8. 8.
    Field, D., Ramsay, A.: How to Change a Person’s Mind: Understanding the Difference between the Effects and Consequences of Speech Acts. In: Proceedings of 5th Workshop on Inference in Computational Semantics (IcoS-5), Buxton, England, pp. 27–36 (2006)Google Scholar
  9. 9.
    Grosz, B., Hunsberger, L., Kraus, S.: Planning and Acting Together. AI Magazine 20, 23–34 (1999)Google Scholar
  10. 10.
    Luck, M., d’Inverno, M.: Plan Analysis for Autonomous Sociological Agents. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986, pp. 182–197. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Luck, M., d’Inverno, M.: Motivated behaviour for goal adoption. In: Zhang, C., Lukose, D. (eds.) DAI 1998. LNCS, vol. 1544, pp. 58–73. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL - The Planning Domain Definition Language. Technical Report CVC TR-98-003/DCS TR-1165. Yale Center for Computational Vision and Control (1998), http://www.cs.yale.edu/~dvm
  13. 13.
    McDermott, D.: The Optop Planner. In: IPC4 Booklet, Fourteenth International Conference on Automated Planning and Scheduling (2004)Google Scholar
  14. 14.
    Riedl, M.O., Young, R.M.: An Intent-Driven Planner for Multi-Agent Story Generation. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004), pp. 186–193. IEEE Computer Society, Washington (2004)Google Scholar
  15. 15.
    Rowe, N., Andrade, S.: Counterplanning for Multi-agent Plans using Stochastic Means-Ends Analysis. In: Proceedings of the IASTED Artificial Intelligence and Applications Conference, pp. 405–441 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hsueh-Min Chang
    • 1
  • Von-Wun Soo
    • 1
    • 2
  1. 1.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Department of Computer Science and Information EngineeringNational University of KaohsiungKaohsiungTaiwan

Personalised recommendations