Agent-Supported Protein Structure Similarity Searching

  • Dariusz Mrozek
  • Bożena Małysiak
  • Wojciech Augustyn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5044)


Searching for similar proteins through the comparison of their spatial structures requires efficient and fully automated methods and become an area of dynamic researches in recent years. We developed an algorithm and set of tools called EAST (Energy Alignment Search Tool). The EAST serves as a tool for finding strong protein structural similarities in a database of protein structures. The similarity searching is performed through the comparison and alignment of protein energy profiles received in the computational process based on the molecular mechanics theory. This representation of protein structures reduces the huge search space. In order to accelerate presented method we implemented it with the use of Multi Agent System (MAS). This significantly improved the efficiency of the search process. In the paper, we present the complexity of the search process, the main idea of the EAST algorithm and brief discussion on the advantages of its implementation as MAS.


Multi Agent System Protein Data Bank Search Process MultiAgent System Energy Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fersht, A.: Enzyme Structure and Mechanism, 2nd edn. W.H. Freeman & Co., NY (1985)Google Scholar
  2. 2.
    Dickerson, R.E., Geis, I.: The Structure and Action of Proteins, 2nd edn. Benjamin/Cummings, Redwood City (1981)Google Scholar
  3. 3.
    Lodish, H., Berk, A., Zipursky, S.L., et al.: Molecular Cell Biology, 4th edn. W. H. Freeman and Company, NY (2001)Google Scholar
  4. 4.
    Branden, C., Tooze, J.: Introduction to Protein Structure. Garland (1991)Google Scholar
  5. 5.
    Creighton, T.E.: Proteins: Structures and molecular properties. Freeman, San Fransico (1993)Google Scholar
  6. 6.
    Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)CrossRefGoogle Scholar
  7. 7.
    Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233(1), 123–138 (1993)CrossRefGoogle Scholar
  8. 8.
    Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering 11(9), 739–747 (1998)CrossRefGoogle Scholar
  9. 9.
    Can, T., Wang, Y.F.: CTSS: A Robust and Efficient Method for Protein Structure Alignment Based on Local Geometrical and Biological Features. In: Proceedings of the 2003 IEEE Bioinformatics Conference (CSB 2003), pp. 169–179 (2003)Google Scholar
  10. 10.
    Burkert, U., Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington (1980)Google Scholar
  11. 11.
    Wooldridge, M.: Introduction to MultiAgent Systems. Wiley &Sons, Chichester (2002)Google Scholar
  12. 12.
    Mrozek, D., Małysiak, B., Kozielski, S.: EAST: Energy Alignment Search Tool. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS, vol. 4223, pp. 696–705. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  14. 14.
    Ponder, J.: TINKER – Software Tools for Molecular Design, Dept. of Biochemistry & Molecular Biophysics, Washington University, School of Medicine, St. Louis (June 2001)Google Scholar
  15. 15.
    Cornell, W.D., Cieplak, P., et al.: A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  16. 16.
    Mrozek, D., Małysiak, B., Kozielski, S.: An Optimal Alignment of Proteins Energy Characteristics with Crisp and Fuzzy Similarity Awards. In: Proc. of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1508–1513 (2007)Google Scholar
  17. 17.
    Smith, T.F., Waterman, M.S.: Identification of common molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  18. 18.
    Gotoh, O.: An Improved Algorithm for Matching Biological Sequences. J. Mol. Biol. 162, 705–708 (1982)CrossRefGoogle Scholar
  19. 19.
    Sellers, P.H.: Pattern recognition in genetic sequences by mismatch density. Bull. Math. Biol. 46, 510–514 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Altschul, S.F., Erickson, B.W.: Locally optimal subalignments using nonlinear similarity functions. Bull. Math. Biol. 48, 633–660 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Altschul, S.F., Erickson, B.W.: Optimal sequence alignment using affine gap costs. Bull. Math. Biol. 48(5-6), 603–616 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE, A White Paper (2003),
  23. 23.
    Sayle, R., Milner-White, E.J.: RasMol: Biomolecular graphics for all. Trends in Biochemical Sciences (TIBS) 20(9), 374 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dariusz Mrozek
    • 1
  • Bożena Małysiak
    • 1
  • Wojciech Augustyn
    • 1
  1. 1.Department of Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations