Using Multiagent System to Build Structural Earth Model

  • Beiting Zhu
  • Zahia Guessoum
  • Michel Perrin
  • Bertrand Braunschweig
  • Pierre Fery-Forgues
  • Jean-François Rainaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5044)


Mainly based on seismic data, structural earth models are commonly used for oil & gas reservoir engineering studies. The geometry and the topology of a structural earth model strictly depend on the geological characteristics of its various surfaces. These characteristics constitute the geologists’ interpretations of the earth model to be built. In the 3D modeling applications currently used in industry, these interpretations are often registered after the completion of the structural earth model. Therefore further changes in the interpretations can hardly be introduced without reconstructing the structural model from scratch. This situation is dramatic since the only true geometrical information concerning subsurface is that issued from drillings, which daily bring new data.For the above reasons, there is a great interest in providing computer-aided tool for validating and improving geological interpretations to facilitate the geologists’ modeling work. This paper presents a distributed problem solving approach, which enables geologists to quickly validate and improve structural earth models by considering new drilling data. This approach is based on a self-organizing multiagent system and on domain-specific expertise.


Cognitive agent model multiagent system distributed problem-solving geological interpretation structural earth modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandel, S., Schneider, S., Perrin, M., et al.: Automatic Building of Structural Geological Models. Journal of Computing & Information Science & Engineering 5(2), 138–148 (2005)CrossRefGoogle Scholar
  2. 2.
    Drogoul, A., Ferber, J., Jacopin, E.: Pengi: Applying Eco-Problem-Solving for Behavior Modelling in an Abstract Eco-System. In: Modeling and Simulation: Proceedings of ESM 1991, Simulation Councils, pp. 337–342 (1991)Google Scholar
  3. 3.
    Dury, A., Le Ber, F., Chevrier, V.: A Reactive Approach for Solving Constraint Satisfaction Problems. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS, vol. 1555, pp. 397–411. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley, Reading (1999)Google Scholar
  5. 5.
    Foundation for intelligent physical agents: FIPA Contract Net Interaction Protocol Specification. FIPA TC Communication, SC00029H, Geneva, Switzerland (1996–2002)Google Scholar
  6. 6.
    Guessoum, Z., Briot, J.P.: From Active Object to Autonomous Agents. IEEE Concurrency 7(3), 68–78 (1999)CrossRefGoogle Scholar
  7. 7.
    Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. Journal of Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)CrossRefGoogle Scholar
  8. 8.
    Ohira, T., Sawatari, R., Tokoro, T.: Distributed Interactions with Compution. In: Agents breaking away, Proc. of Modelling Autonomous Agents in Multi-Agent World (1996)Google Scholar
  9. 9.
    Perrin, M.: Geological Consistency: An Opportunity for Safe Surface Assembly and Quick Model Exploration. 3D Modeling of Natural Objects, A Challenge for the 2000’s, 3(pp. 4–5), Nancy France (June 1998)Google Scholar
  10. 10.
    Perrin, M., Zhu, B., Rainaud, J.F., et al.: Knowledge-driven Application for Geological Modelling. Journal of Petroleum Science and Engineering, 89–104 (2005)Google Scholar
  11. 11.
    Ruas, A.: Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. Phd thesis, Université de Marne la Vallée (1999)Google Scholar
  12. 12.
    Schreiber, G., Akkermans, H., Anjewierden, A., et al.: Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, Cambridge (2000)Google Scholar
  13. 13.
    Serugendo, G., Gleizes, M.-P., Karageorgos, A.: Self-organisation and emergence in MAS: An overview. Informatica 30, 45–54 (2006)zbMATHGoogle Scholar
  14. 14.
    Zhu, B., Guessoum, Z., Perrin, M., et al.: Using multiagent systems for validating geological interpretation. In: 2nd IEEE International Conference on Intelligent Computer Communication and Processing, pp. 75–81 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beiting Zhu
    • 1
  • Zahia Guessoum
    • 2
  • Michel Perrin
    • 3
  • Bertrand Braunschweig
    • 1
  • Pierre Fery-Forgues
    • 1
  • Jean-François Rainaud
    • 1
  1. 1.Institut Français du PétroleRueil-MalmaisonFrance
  2. 2.Laboratoire d’Informatique de Paris 6ParisFrance
  3. 3.Ecole des Mines de ParisParisFrance

Personalised recommendations