Advertisement

MAGEFRAME: A Modular Agent Framework to Support Various Communication Schemas Based on a Self-embedding Algorithm

  • Quintin J. Balsdon
  • Elizabeth M. Ehlers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5044)

Abstract

The communication techniques used amongst agents in a system is critical to the effectiveness and success of collaboration based actions. Agents which fail to store or communicate information in an effective uniform manner will not be able to accomplish their goals. The aim of the paper is to determine the particular difficulties relating to agent information representation and reconstruction. In addition the paper will discuss whether or not it is profitable for agents to be equipped with the ability to modify their communication style.

Keywords

Agents Communication Collaboration Agent Self-Modification Embeddable Components Agent Framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Alan R. Apt, Pearson Education, Inc., London (2003)MATHGoogle Scholar
  2. 2.
    Kant, J., Thiriot, S.: Modeling one human decision maker with a multi-agent system: the CODAGE approach. In: AAMAS 2006: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, pp. 50–57. ACM Press, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. K. Hargett. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  4. 4.
    Gamatié, A., Gautier, T., Le Guernic, P., Talpin, J.P.: Polychronous design of embedded real-time applications. In: ACM Trans. Softw. Eng. Methodol., vol. 16(2), p. 9. ACM Press, New York (2007), http://0-doi.acm.org.raulib.rau.ac.za:80/10.1145/1217295.1217298 Google Scholar
  5. 5.
    Ullman, J.D.: Elements of ML Programming. In: Horton, M. (ed.). Prentice Hall, Upper Saddle River (1998)Google Scholar
  6. 6.
    Singh, M.P.: Agent Communication Languages: Rethinking the Principles. In: Computer, vol. 31(12), pp. 40–47. IEEE Computer Society Press, Los Alamitos (1998), http://dx.doi.org/10.1109/2.735849 Google Scholar
  7. 7.
    Mundici, D.: Robinson’s Consistency Theorem in Soft Model Theory. In: Transactions of the American Mathematical Society, vol. 263(1), pp. 231–241 (1981) (2007/3/12), http://links.jstor.org/sici?sici=0002-9947%28198101%29263%3A1%3C231%3ARCTISM%3E2.0.CO%3B2-O
  8. 8.
    Huhns, M.N., Rose, J.R., Roy, S.S., Turkett Jr., W.H.: An Agent Architecture for Long-Term Robustness. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: part 3, vol. 3, pp. 1149–1156. ACM Press, New York (2002)Google Scholar
  9. 9.
    van Diggelen, J., Beun, R., Dignum, F., van Eijk, R.M., Meyer, J.: ANEMONE: an effective minimal ontology negotiation environment. In: AAMAS 2006: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, pp. 899–906. ACM Press, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Thrun, S.: Monte Carlo POMDPs. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12, pp. 1064–1070. MIT Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Quintin J. Balsdon
    • 1
  • Elizabeth M. Ehlers
    • 1
  1. 1.The University of Joahnnesburg: Academy for Information TechnologySouth Africa

Personalised recommendations