Identifying Structural Changes in Networks Generated from Agent-Based Social Simulation Models

  • Shah Jamal Alam
  • Bruce Edmonds
  • Ruth Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5044)


Finding suitable analysis techniques for networks generated from social processes is a difficult task when the population changes over time. Traditional social network analysis measures may not work in such circumstances. It is argued that agent-based social networks should not be constrained by a priori assumptions about the evolved network and/or the analysis techniques. In most agent-based social simulation models, the number of agents remains fixed throughout the simulation; this paper considers the case when this does not hold. Thus the aim of this paper is to demonstrate how the network signatures change when the agents’ population depends upon endogenous social processes. We argue for a much wider attention from the social simulation community in addressing this open research problem.


agent-based simulation network analysis Kolmogorov-Smirnov statistic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alam, S.J., Meyer, R., Norling, E.: Agent-based Model of Impact of Socioeconomic Stressors: A Dynamic Network Perspective. In: Sixth Intl. Joint Conf. on Autonomous Agents and Multiagent Systems, Hawaii, USA, pp. 1079–1081 (2007)Google Scholar
  2. 2.
    Alam, S.J., Meyer, R., Norling, E.: Using Agent-Based Modeling to Understand the Impact of HIV/AIDS in the Context of Socio-Economic Stressors. CPM-06-167 (2006),
  3. 3.
    Albert, R., Barabasi, A.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74 (2002)Google Scholar
  4. 4.
    Edmonds, B., Chattoe, E.: When Simple Measures Fail: Characterising Social Networks Using Simulation. Social Network Analysis: Advances and Empirical Applications Forum. Oxford, UK (2005),
  5. 5.
    Faust, K.: Comparing Social Networks: Size, Density, and Local Structure. Metodološki zveski 3(2), 185–216 (2006)Google Scholar
  6. 6.
    Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Phys. Rev. E 64, 4 (2001)CrossRefGoogle Scholar
  7. 7.
    Kirkman, T.W.: Statistics to Use (1998),
  8. 8.
    Moss, S., Edmonds, B.: Sociology and Simulation: Statistical and Qualitative Cross-Validation. AJS 110(4), 1095–1131 (2005)Google Scholar
  9. 9.
    Neave, H., McConwa, K.: Distribution free methods. OUP (1987)Google Scholar
  10. 10.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit. ACM Trans. on Modeling and Computer Simulations 16(1), 1–25 (2006)CrossRefGoogle Scholar
  12. 12.
    Pujol, J.M., et al.: How Can Social Networks Ever Become Complex? Modelling the Emergence of Complex Networks from Local Social Exchanges. JASSS 8(4), 12 (2005), Google Scholar
  13. 13.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Watts, D.J., Strogatz, S.: Collective Dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  15. 15.
    Ziervogel, G., et al.: Adapting to climate, water and health stresses: insights from Sekhukhune, South Africa. Stokholm Environment Institute (Oxford) (2006)Google Scholar
  16. 16.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shah Jamal Alam
    • 1
  • Bruce Edmonds
    • 1
  • Ruth Meyer
    • 1
  1. 1.Centre for Policy ModellingManchester Metropolitan University Business SchoolManchesterUnited Kingdom

Personalised recommendations