Reasoning about Norms, Obligations, Time and Agents

  • Jan Broersen
  • Leendert van der Torre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5044)


Reasoning about norms and time is of central concern to the regulation or control of the behavior of a multiagent system. In this paper we introduce a representation of normative systems that distinguishes between norms and the detached obligations of agents over time, leading to a simple and therefore practical way to reason about norms, obligations, time and agents. We consider the reasoning tasks to determine whether a norm is redundant in a normative system and whether two normative systems are equivalent. In the former case the redundant norm might be removed. In the latter case one norm might be replaced by the other. It is well known that properties concerning iterated or deontic detachment no longer hold when reasoning with multiple agents or with obligations over time. Yet, earlier approaches to reasoning about norms rarely consider the intricacies of time. We show how norms can be used to define the persistence of obligations of agents over time. We illustrate our approach by discussing three ways to relate norms and obligations of agents over time. Also we show how these three ways can be characterized.


Temporal Structure Multiagent System Normative System Belief State Deontic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchourrón, C.E., Makinson, D.: Hierarchies of regulations and their logic. In: Hilpinen, R. (ed.) New Studies in Deontic Logic, pp. 125–148. Reidel (1981)Google Scholar
  2. 2.
    Alchourrón, C.E., Bulygin, E.: Normative Systems. Springer, Wien (1971)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: Mocha: Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the causal calculator. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Boella, G., van der Torre, L.: An architecture of a normative system. In: Procs. of AAMAS 2006, pp. 229–231. ACM Press, New York (2006)Google Scholar
  6. 6.
    Boella, G., van der Torre, L.: Substantive and procedural norms in normative multiagent systems. Journal of Applied Logic (2008)Google Scholar
  7. 7.
    Boella, G., van der Torre, L., Verhagen, H. (eds.): Computational and Mathematical Organization Theory. Selected papers from NORMAS 2005 (2006)Google Scholar
  8. 8.
    Boella, G., van der Torre, L., Verhagen, H. (eds.): Normative Mulit-agent systems, Procs. of NORMAS 2007, Dagstuhl Seminar proceedings 07122 (2007)Google Scholar
  9. 9.
    Broersen, J., Brunel, J.: What I fail to do today, I have to do tomorrow: a logical study of the propagation of obligations. In: Proceedings CLIMA VIII. LNCS. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Broersen, J., Dignum, F., Dignum, V., Meyer, J.-J.: Designing a deontic logic of deadlines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS, vol. 3065, pp. 43–56. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Brunel, J., Bodeveix, J.-P., Filali, M.: A state/Event temporal deontic logic. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS, vol. 4048, pp. 53–68. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Chisholm, R.: Contrary-to-duty imperatives and deontic logic. Analyse 24, 33–36 (1963)CrossRefGoogle Scholar
  13. 13.
    Forrester, J.: Gentle murder, or the adverbial samaritan. The Journal of Philosophy 81, 193–197 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hansen, J., Pigozzi, G., van der Torre, L.: Ten philosophical problems in deontic logic. In: Proceedings of Normative Multi-agent Systems, NORMAS 2007 (2007)Google Scholar
  15. 15.
    Hansen, J.: Sets, sentences, and some logics about imperatives. Fundam. Inform. 48(2-3), 205–226 (2001)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Horty, J.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Logic Journal of IGPL (1996)Google Scholar
  18. 18.
    Loewer, Belzer: Dyadic deontic detachment. Synthese 54, 295–318 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Makinson, D.: Five faces of minimality. Studia Logica 52, 339–379 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Makinson, D.: On a fundamental problem of deontic logic. In: McNamara, P., Prakken, H. (eds.) Norms, Logics and Information Systems. New Studies on Deontic Logic and Computer Science, pp. 29–54. IOS Press, Amsterdam (1999)Google Scholar
  21. 21.
    Makinson, D., van der Torre, L.: Input-output logics. Journal of Philosophical Logic 29(4), 383–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical Logic 30(2), 155–185 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Makinson, D., van der Torre, L.: Permissions from an input-output perspective. Journal of Philosophical Logic 32(4), 391–416 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pacuit, E., Parikh, R., Cogan, E.: The logic of knowledge based obligation. Knowledge, Rationality and Action 149(2), 311–341 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sergot, M.J., Craven, R.: The deontic component of action language nC+. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS, vol. 4048, pp. 222–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    van Eck, J.: A system of temporally relative modal and deontic predicate logic and its philosophical applications. logique et analyse 25, 339–381 (1982)MathSciNetzbMATHGoogle Scholar
  28. 28.
    van Fraassen, B.: Values and the heart’s command. The Journal of Philosophy (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Broersen
    • 1
  • Leendert van der Torre
    • 2
  1. 1.University of UtrechtThe Netherlands
  2. 2.Computer Science and CommunicationUniversity of LuxembourgLuxembourg

Personalised recommendations