Memetic Differential Evolution Frameworks in Filter Design for Defect Detection in Paper Production

  • Ferrante Neri
  • Ville Tirronen
Part of the Studies in Computational Intelligence book series (SCI, volume 213)


This chapter studies and analyzes Memetic Differential Evolution (MDE) Frameworks for designing digital filters, which aim at detecting paper defects produced during an industrial process. MDE Frameworks employ the Differential Evolution (DE) as an evolutionary framework and a list of local searchers adaptively coordinated by a control scheme. Here, three different variants of MDE are taken into account and their features and performance are compared. The binomial explorative features of the DE framework in contraposition to the exploitative features of the local searcher are analyzed in detail in light of the stagnation prevention problem, typical for the DE. Much emphasis in this chapter is given to the various adaptation systems and to their applicability this image processing problem.


Particle Swarm Optimization Differential Evolution Defect Detection Finite Impulse Response Memetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, R.D. (ed.): Roll and Web Defect Terminology. TAPPI Press (1995)Google Scholar
  2. 2.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  3. 3.
    Chang, C.Y.: Contextual-based Hopfield neural network for medical image edge detection. Optical Engineering 45(3), 37006 (2006)CrossRefGoogle Scholar
  4. 4.
    Valli, G., Poli, R., Cagnoni, S., Coppini, G.: Neural networks and prior knowledge help the segmentation of medical images. Journal of Computing and Information Technology 6(2), 117–133 (1998)Google Scholar
  5. 5.
    Poli, R.: Genetic programming for feature detection and image segmentation. In: Fogarty, T.C. (ed.) AISB-WS 1996. LNCS, vol. 1143, pp. 110–125. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Cagnoni, S., Dobrzeniecki, A., Poli, R., Yanch, J.: Genetic-algorithm-based interactive segmentation of 3d medical images. Image and Vision Computing Journal 17(12), 881–896 (1999)CrossRefGoogle Scholar
  7. 7.
    Hernandez, B., Olague, G., Hammoud, R., Trujillo, L., Romero, E.: Visual learning of texture descriptors for facial expression recognition in thermal imagery. Computer Vision and Image Understanding 106(2–3), 258–269 (2007)CrossRefGoogle Scholar
  8. 8.
    Olague, G., Fernandez, F., Pérez, C., Lutton, E.: The infection algorithm: An artificial epidemic approach for dense stereo correspondence. Artificial Life 12(4), 593–615 (2006)CrossRefGoogle Scholar
  9. 9.
    Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic programming. In: Keijzer, M., et al. (eds.) Proceedings of the 8th annual conference on Genetic and evolutionary computation, vol. 1, pp. 887–894. ACM Press, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Chan, C., Pang, G.K.H.: Fabric defect detection by Fourier analysis. IEEE Transactions on Industry Applications 36(5), 1267–1276 (2000)CrossRefGoogle Scholar
  11. 11.
    Parker, S., Chan, J.: Dirt counting in pulp: An approach using image analysis methods. In: Younan, N. (ed.) Signal and Image Processing (2002) paper code 359–131Google Scholar
  12. 12.
    Iivarinen, J., Pakkanen, J., Rauhamaa, J.: A SOM-based system for web surface inspection. In: Machine Vision Applications in Industrial Inspection XII, SPIE, vol. 5303, pp. 178–187 (2004)Google Scholar
  13. 13.
    Dunn, D., Higgins, W.E.: Optimal Gabor filters for texture segmentation. IEEE Transactions on Image Processing 4(7), 947–964 (1995)CrossRefGoogle Scholar
  14. 14.
    Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using evolutionary gabor filter optimization. IEEE Transactions on Intelligent Transportation Systems 6(2), 125–137 (2005)CrossRefGoogle Scholar
  15. 15.
    Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A 2(7), 1160–1169 (1985)CrossRefGoogle Scholar
  16. 16.
    Tsa, D.M., Wu, S.K.: Automated surface inspection using Gabor filters. The International Journal of Advanced Manufacturing Technology 16(7), 474–482 (2000)Google Scholar
  17. 17.
    Weldon, T.P., Higgins, W.E., Dunn, D.F.: Efficient Gabor filter design for texture segmentation. Pattern Recognition 29(12), 2005–2015 (1996)CrossRefGoogle Scholar
  18. 18.
    Ji, Y., Chang, K.H., Hung, C.-C.: Efficient edge detection and object segmentation using Gabor filters. In: ACM-SE 42: Proceedings of the 42nd annual Southeast regional conference, pp. 454–459. ACM Press, New York (2004)CrossRefGoogle Scholar
  19. 19.
    Ilonen, J., Kämäräinen, J., Kälviäinen, H.: Efficient computation of Gabor features. Research Report 100, Lappeenranta University of Technology, Department of Information Technology (2005)Google Scholar
  20. 20.
    Kumar, A., Pang, G.: Defect detection in textured materials using Gabor filters. IEEE Transactions on Industry Applications 38(2), 425–440 (2002)CrossRefGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, ICSI (1995)Google Scholar
  22. 22.
    Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Osmera, P. (ed.) Proceedings of 6th International Mendel Conference on Soft Computing, pp. 76–83 (2000)Google Scholar
  23. 23.
    Lopez Cruz, I.L., Van Willigenburg, L., Van Straten, G.: Parameter control strategy in differential evolution algorithm for optimal control. In: Hamza, M.H. (ed.) Proceedings of the IASTED International Conference Artificial Intelligence and Soft Computing, pp. 211–216. ACTA Press (2001)Google Scholar
  24. 24.
    Liu, J., Lampinen, J.: On setting the control parameter of the differential evolution algorithm. In: Proceedings of the 8th International Mendel Conference on Soft Computing, pp. 11–18 (2002)Google Scholar
  25. 25.
    Liu, J., Lampinen, J.: Adaptive parameter control of differential evolution. In: Proceedings of the 8th International Mendel Conference on Soft Computing, pp. 19–26 (2002)Google Scholar
  26. 26.
    Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. In: Proceedings of the 17th IEEE Region 10 International Conference on Computer, Communications, Control and Power Engineering, vol. I, pp. 606–611 (2002)Google Scholar
  27. 27.
    Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)zbMATHGoogle Scholar
  28. 28.
    Ali, M.M., Törn, A.: Population set based global optimization algorithms: Some modifications and numerical studies. Computers and Operations Research (31), 1703–1725 (2004)Google Scholar
  29. 29.
    Tvrdík, J.: Differential evolution: Competitive setting of control parameters. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 207–213 (2006)Google Scholar
  30. 30.
    Zaharie, D.: Critical values for control parameters of differential evolution algorithm. In: Matuŝek, R., Oŝmera P. (eds.) Proceedings of 8th International Mendel Conference on Soft Computing, pp. 62–67 (2002)Google Scholar
  31. 31.
    Zielinskiand, K., Weitkemper, P., Laur, R., Kammeyer, K.-D.: Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1857–1864 (2006)Google Scholar
  32. 32.
    Chiou, J.-P., Wang, F.-S.: A hybrid method of differential evolution with application to optimal control problems of a bioprocess system. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 627–632 (1998)Google Scholar
  33. 33.
    Chiou, J.-P., Wang, F.-S.: Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Computers and Chemical Engineering 23(9), 1277–1291 (1999)CrossRefGoogle Scholar
  34. 34.
    Mydur, R.: Application of evolutionary algorithms and neural networks to electromagnetic inverse problems. Master’s thesis, Texas A and M University, Texas, USA (2000)Google Scholar
  35. 35.
    Rogalsky, T., Derksen, R.W.: Hybridization of differential evolution for aerodynamic design. In: Proceedings of the 8th Annual Conference of the Computational Fluid Dynamics Society of Canada, pp. 729–736 (2000)Google Scholar
  36. 36.
    Wang, F.-S., Jang, H.-J.: Parameter estimation of a bioreaction model by hybrid differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 410–417 (2000)Google Scholar
  37. 37.
    Hendtlass, T.: A combined swarm differential evolution algorithm for optimization problems. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS, vol. 2070, pp. 11–18. Springer, Heidelberg (2001)Google Scholar
  38. 38.
    Lin, Y.-C., Wang, F.-S., Hwang, K.-S.: A hybrid method of evolutionary algorithms for mixed-integer nonlinear optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, pp. 2159–2166 (1999)Google Scholar
  39. 39.
    Lin, Y.-C., Hwang, K.-S., Wang, F.-S.: Co-evolutionary hybrid differential evolution for mixed-integer optimization problems. Engineering Optimization 33(6), 663–682 (2001)CrossRefGoogle Scholar
  40. 40.
    Su, C.-T., Lee, C.-S.: Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Transactions on Power Delivery 18(3), 1022–1027 (2003)CrossRefGoogle Scholar
  41. 41.
    Lin, Y.-C., Hwang, K.-S., Wang, F.-S.: Hybrid differential evolution with multiplier updating method for nonlinear constrained optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 872–877 (2002)Google Scholar
  42. 42.
    Chiou, J.-P., Chang, C.-F., Su, C.-T.: Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Transactions on Power Systems 19(4), 1794–1800 (2004)CrossRefGoogle Scholar
  43. 43.
    Neumann, D., de Araujo, H.X.: Hybrid differential evolution method for the mixed H2/H robust control problem under pole assignment. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, pp. 1319–1324 (2005)Google Scholar
  44. 44.
    Kaelo, P., Ali, M.M.: Differential evolution algorithms using hybrid mutation. Computational Optimization and Applications 37(2), 231–246 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: A memetic differential evolution in filter design for defect detection in paper production. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 320–329. Springer, Heidelberg (2007)Google Scholar
  46. 46.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. Journal of the ACM 8, 212–229 (1961)zbMATHCrossRefGoogle Scholar
  47. 47.
    Hoos, H.H., Stützle, T.: Stochastic Local Search Foundations and Applications. Morgan Kaufmann, San Francisco (2004)Google Scholar
  48. 48.
    Cerny, V.: A thermodynamical aprroach to the traveling salesman problem. Journal of Optimization, theory and Application 45(1), 41–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Caponio, A., Neri, F., Tirronen, V.: Super-fit Control Adaptation in Memetic Differential Evolution Frameworks. Soft Computing-A Fusion of Foundations, Methodologies and Applications 13(8), 811–831 (2009)Google Scholar
  50. 50.
    Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  51. 51.
    Neri, F., Cascella, G.L., Salvatore, N., Kononova, A.V., Acciani, G.: Prudent-daring vs tolerant survivor selection schemes in control design of electric drives. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 805–809. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  52. 52.
    Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of pmsm drives. IEEE Transactions on System Man and Cybernetics-part B 37(1), 28–41 (2007)CrossRefGoogle Scholar
  53. 53.
    Neri, F., Mäkinen, R.A.E.: Hierarchical evolutionary algorithms and noise compensation via adaptation. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence, pp. 345–369. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  54. 54.
    Neri, F., Toivanen, J., Mäkinen, R.A.E.: An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Applied Intelligence 27(3), 219–235 (2007)CrossRefGoogle Scholar
  55. 55.
    Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE/ ACM Transactions on Computational Biology and Bioinformatics 4(2), 264–278 (2007)CrossRefGoogle Scholar
  56. 56.
    Kirkpatrick, S., Gelatt, C.D.J., Vecchi, M.P.: Optimization by simulated annealing. Science (220), 671–680 (1983)Google Scholar
  57. 57.
    Szu, H., Hartley, R.: Fast simulated annealing. Physics Letters A 122, 157–162 (1987)CrossRefGoogle Scholar
  58. 58.
    Balakrishnan, N., Basu, A.P.: The Exponential Distribution: Theory, Methods, and Applications. Gordon and Breach (1996)Google Scholar
  59. 59.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, pp. 39–43 (1995)Google Scholar
  60. 60.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  61. 61.
    Nelder, A., Mead, R.: A simplex method for function optimization. Computation Journal 7, 308–313 (1965)zbMATHGoogle Scholar
  62. 62.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM Journal on Optimization 9, 112–147 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. The Computer Journal 3(3), 175–184 (1960)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ferrante Neri
    • 1
  • Ville Tirronen
    • 1
  1. 1.Department of Mathematical Information Technology, AgoraUniversity of Jyväskylä(Agora)Finland

Personalised recommendations