A Class of Evolution-Based Kernels for Protein Homology Analysis: A Generalization of the PAM Model

  • Valentina Sulimova
  • Vadim Mottl
  • Boris Mirkin
  • Ilya Muchnik
  • Casimir Kulikowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)


There are two desirable properties that a pair-wise similarity measure between amino acid sequences should possess in order to produce good performance in protein homology analysis. First, it is the presence of kernel properties that allow using popular and well-performing computational tools designed for linear spaces, like SVM and k-means. Second, it is very important to take into account common evolutionary descent of homologous proteins. However, none of the existing similarity measures possesses both of these properties at once. In this paper, we propose a simple probabilistic evolution model of amino acid sequences that is built as a straightforward generalization of the PAM evolution model of single amino acids. This model produces a class of kernel functions each of which is computed as the likelihood of the hypothesis that both sequences are results of two independent evolutionary transformations of a hidden common ancestor under some specific assumptions on the evolution mechanism. The proposed class of kernels is rather wide and contains as particular subclasses not only the family of J.-P Vert’s local alignment kernels, whose algebraic structure was introduced without any evolutionary motivation, but also some other families of local and global kernels. We demonstrate, via k-means clustering of a set of amino acid sequences from the VIDA database, that the global kernel can be useful in bringing together otherwise very different protein families.


Protein homology analysis evolution modeling amino acid sequence alignment evolutionary kernel function kernel-derived clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino-acid sequence of two proteins. J.of Molecular Biology 48, 443–453 (1970)CrossRefGoogle Scholar
  2. 2.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. of Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  3. 3.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pearson, W.R.: Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132, 185–219 (2000)PubMedGoogle Scholar
  5. 5.
    Mirkin, B., Camargo, R., Fenner, T., Loizou, G., Kellam, P.: Aggregating homologous protein families in evolutionary reconstructions of herpesviruses. In: Ashlock, D. (ed.) Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 255–262 (2006)Google Scholar
  6. 6.
    Rocha, J., Rossello, F., Segura, J.: The Universal Similarity Metric does not detect domain similarity. Technical Report, Quantitative Methods, Q-bio QM (2006),
  7. 7.
    Vinga, S., Almeida, J.: Alignment-free sequence comparison – A review. Bioinformatics 19, 513–523 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Vert, J.-P., Saigo, H., Akutsu, T.: Local alignment kernels for biological sequences. In: Scholkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)Google Scholar
  9. 9.
    Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)Google Scholar
  10. 10.
    Rangwala, H., Karypis, G.: Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 21(23), 4239–4247 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Qiu, J., Hue, M., Ben-Hur, A., Vert, J.-P., Noble, W.S.: A structural alignment kernel for protein structures. Bioinformatics 23(9), 1090–1098 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Sun, L., Ji, S., Ye, J.: Adaptive diffusion kernel learning from biological networks for protein function prediction. BMC Bioinformatics 9, 162 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels for dis-criminative protein classification. Bioinformatics 20(4), 467–476 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz (1999)Google Scholar
  15. 15.
    Cuturi, M., Vert, J.-P.: A mutual information kernel for sequences. In: Proc. of IEEE Int. Joint Conference on Neural Networks, vol. 3, pp. 1905–1910 (2004)Google Scholar
  16. 16.
    Thorne, J.L., Kishino, H., Felsenstein, J.: An evolutionary model for maximum likelihood alignment of DNA sequences. Journal of Molecular Evolution 33, 114–124 (1991)CrossRefPubMedGoogle Scholar
  17. 17.
    Miklos, I., Lunter, G.A., Holmes, I.: A “long indel” model for evolutionary sequence alignment. Molecular Biology and Evolution 21(3), 529–540 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    Miklos, I., Novak, A., Satija, R., Lyngso, R., Hein, J.: Stochastic models of sequence evolution including insertion-deletion events. Statistical methods in medical research 29 (2008)Google Scholar
  19. 19.
    Metzler, D.: Statistical alignment based on fragment insertion and deletion models. Bioinformatics 19, 490–499 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    Dayhoff, M.O., Schwarts, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. Atlas of Protein Sequences and Structures 5(suppl. 3), 345–352 (1978)Google Scholar
  21. 21.
    Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89(22), 10915–10919 (1992)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sulimova, V., Mottl, V., Kulikowski, C., Muchnik, I.: Probabilistic evolutionary model for substitution matrices of PAM and BLOSUM families. In: DIMACS Technical Report 2008-16. DIMACS Technical Report 2008-16, Rutgers University, 17 p. (2008),
  23. 23.
    Mercer, T.: Functions of positive and negative type and their connection with the theory of integral equations. Trans. London. Philos. Soc. A 209, 415–416 (1999)CrossRefGoogle Scholar
  24. 24.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. Wiley, New York (1990)CrossRefGoogle Scholar
  25. 25.
    Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall/CRC, Boca Raton (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Valentina Sulimova
    • 1
  • Vadim Mottl
    • 2
  • Boris Mirkin
    • 3
  • Ilya Muchnik
    • 4
  • Casimir Kulikowski
    • 4
  1. 1.Tula State UniversityTulaRussia
  2. 2.Computing Center of the Russian Academy of SciencesMoscowRussia
  3. 3.Birkbeck CollegeUniversity of LondonLondonUK
  4. 4.Rutgers UniversityNew BrunswickUSA

Personalised recommendations