Prediction of Contiguous Regions in the Amniote Ancestral Genome

  • Aïda Ouangraoua
  • Frédéric Boyer
  • Andrew McPherson
  • Éric Tannier
  • Cedric Chauve
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)


We investigate the problem of inferring contiguous ancestral regions (CARs) of the genome of the last common ancestor of all extant amniotes, based on the currently sequenced and assembled amniote genomes as ingroups and three teleost fish genomes as outgroups. We combine a methodological framework using conserved syntenies computed from whole genome alignments of amniote species together with double conserved syntenies (DCS) using gene families from amniote and fish genomes, to take into account the whole genome duplication that occurred in the teleost lineage. From these comparisons, ancestral genome segments are computed using techniques inspired by physical mapping. Due to the difficulty caused by the whole genome duplication and the large evolutionary distance to the closest assembled outgroup, very few methods have been published with a reconstruction of the amniote ancestral genome. This one is the first which is founded on a simple and formal methodological framework, whose good stability is shown and whose CARs cover large regions of the human and chicken genomes.


Mammalian Genome Genome Duplication Whole Genome Duplication Chicken Genome Ancestral Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizadeh, F., et al.: Physical mapping of chromosomes using unique probes. J. Comp. Biol. 2, 159–184 (1995)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Chauve, C., Gingras, Y.: Formal models of gene clusters. In: Zelikovsky, A., Mandoiu, I. (eds.) Bioinformatics Algorithms: Techniques and Applications. Wiley Series on Bioinformatics, pp. 177–202. Wiley Interscience, HobokenGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)CrossRefGoogle Scholar
  4. 4.
    Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse and rat genomes. Genome Res. 14, 507–516 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bourque, G., Tesler, G., Pevzner, P.A.: The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. Genome Res. 16, 311–313 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, e1000234 (2008)CrossRefGoogle Scholar
  7. 7.
    Dietrich, F.S., et al.: The ashbya gossypii genome as a tool for mapping the ancient saccharomyces cerevisiae genome. Science 304, 304–307 (2004)CrossRefPubMedGoogle Scholar
  8. 8.
    Hubbard, T.J.P., et al.: Ensembl 2007. Nucl. Acid. Res. 35, D610–D617 (2007)CrossRefGoogle Scholar
  9. 9.
    Faraut, T.: Addressing chromosome evolution in the whole-genome sequence era. Chromosome Res. 16, 5–16 (2008)CrossRefPubMedGoogle Scholar
  10. 10.
    Froenicke, L., et al.: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res. 16, 306–310 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for verte- brate genome evolution. Genome Biol. 8, R141 (2007)CrossRefGoogle Scholar
  12. 12.
    Jaillon, O., et al.: Genome duplication in the teleost fish tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast saccharomyces cerevisiae. Nature 428, 617–624 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    Kohn, M., et al.: Reconstruction of a 450-my-old ancestral vertebrate protokaryotype. Trends Genet. 22, 203–210 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    Ma, J., et al.: DUPCAR: Reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15, 1007–1027 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ma, J., Haussler, D., Miller, W., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: SODA 2004, pp. 761–770 (2004)Google Scholar
  18. 18.
    Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete Appl. Math. 88, 325–354 (1998)CrossRefGoogle Scholar
  19. 19.
    Muffato, M., Roest Crollius, H.: Paleogenomics, or the recovery of lost genomes from the mist of times. BioEssays 30, 122–134 (2008)CrossRefPubMedGoogle Scholar
  20. 20.
    Murphy, W.J., et al.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    Nakatani, Y., Takeda, H., Morishita, S.: Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 17, 1254–1265 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rocchi, M., Archidiacono, N., Stanyon, R.: Ancestral genome reconstruction: An integrated, multi-disciplinary approach is needed. Gen. Res. 16, 1441 (2006)CrossRefGoogle Scholar
  23. 23.
    Van de Peer, Y.: Computational approaches to unveiling ancient genome duplications. Nat. Rev. 5, 752–763 (2004)CrossRefGoogle Scholar
  24. 24.
    Wienberg, J.: The evolution of eutherian chromosomes. Curr. Opin. Genet. and Dev. 14, 657–666 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aïda Ouangraoua
    • 1
  • Frédéric Boyer
    • 2
  • Andrew McPherson
    • 1
  • Éric Tannier
    • 3
  • Cedric Chauve
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnaby (BC)Canada
  2. 2.Institut de Recherches en Technologies et Sciences pour le Vivant; Laboratoire Biologie, Informatique et MathématiquesCEA GrenobleGrenobleFrance
  3. 3.Laboratoire de Biométrie et Biologie ÉvolutiveINRIA Rhône-Alpes; Université de Lyon; Université Lyon 1; CNRS, UMR5558VilleurbanneFrance

Personalised recommendations