Advertisement

Counting Faces in Split Networks

  • Lichen Bao
  • Sergey Bereg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5542)

Abstract

SplitsTree is a popular program for inferring and visualizing various phylogenetic networks including split networks. Split networks are useful for realizing metrics that are linear combinations of split metrics. We show that the realization is not unique in some cases and design an algorithm for computing split networks with minimum number of faces. We also prove that the minimum number of faces in a split network is equal to the number of pairs of incompatible splits.

Keywords

Short Path Phylogenetic Network Split System Virtual Edge Popular Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandelt, H., Dress, A.: A canonical decomposition theory for metrics on a finite set. Advances in Mathematics 92, 47–105 (1992)CrossRefGoogle Scholar
  2. 2.
    Bao, L., Bereg, S.: Clustered splitsnetworks. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 469–478. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bryant, D., Moulton, V.: Neighbornet: An agglomerative method for the construction of planar phylogenetic networks. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 375–391. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Buneman, P.: The recovery of trees from measures of dissimlarity. Math. and the Archeological and Historical Sciences, 387–395 (1971)Google Scholar
  5. 5.
    Cassens, I., Van Waerebeek, K., Best, P.B., Crespo, E.A., Reyes, J., Milinkovitch, M.C.: The phylogeography of dusky dolphins (lagenorhynchus obscurus): a critical examination of network methods and rooting procedures. Mol. Ecol. 12(7), 1781–1792 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    Dress, A., Huson, D.: Constructing splits graphs. IEEE/ACM Transactions in Computational Biology and Bioinformatics 1, 109–115 (2004)CrossRefGoogle Scholar
  7. 7.
    Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic networks. INFORMS Journal on Computing 16, 459–469 (2004)CrossRefGoogle Scholar
  9. 9.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254–267 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    Linder, C.R., Warnow, T.: Overview of phylogeny reconstruction. In: Aluru, S. (ed.) Handbook of Computational Biology. CRC Computer and Information Science Series. Chapman & Hall, Boca Raton (2005)Google Scholar
  11. 11.
    Lyngsø, R.B., Song, Y.S., Hein, J.: Minimum recombination histories by branch and bound. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.E.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biology Bioinformatics 155(1), 13–23 (2004)CrossRefGoogle Scholar
  13. 13.
    Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)PubMedGoogle Scholar
  14. 14.
    Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. Advances in Mathematics 21, 413–422 (2005)Google Scholar
  15. 15.
    Zahid, M.A.H., Mittal, A., Joshi, R.C.: A pattern recognition-based approach for phylogenetic network construction with constrained recombination. Pattern Recognition 39(12), 387–395 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lichen Bao
    • 1
  • Sergey Bereg
    • 1
  1. 1.Department of Computer Science Erik Jonsson School of Engineering & Computer ScienceThe University of Texas at DallasRichardsonUSA

Personalised recommendations