Situvis: A Visual Tool for Modeling a User’s Behaviour Patterns in a Pervasive Environment

  • Adrian K. Clear
  • Ross Shannon
  • Thomas Holland
  • Aaron Quigley
  • Simon Dobson
  • Paddy Nixon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5538)


One of the key challenges faced when developing context-aware pervasive systems is to capture the set of inputs that we want a system to adapt to. Arbitrarily specifying ranges of sensor values to respond to will lead to incompleteness of the specification, and may also result in conflicts, when multiple incompatible adaptations may be triggered by a single user action. We posit that the ideal approach combines the use of past traces of real, annotated context data with the ability for a system designer or user to go in and interactively modify the specification of the set of inputs a particular adaptation should be responsive to. We introduce Situvis, an interactive visualisation tool we have developed which assists users and developers of context-aware pervasive systems by visually representing the conditions that need to be present for a situation to be triggered in terms of the real-world context that is being recorded, and allows the user to visually inspect these properties, evaluate their correctness, and change them as required. This tool provides the means to understand the scope of any adaptation defined in the system, and intuitively resolve conflicts inherent in the specification.


Activity Recognition Smart Home Context Data Visual Tool Pervasive Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applications. PhD thesis, The School of Information Technology and Electrical Engineering, University of Queensland (September 2003)Google Scholar
  2. 2.
    Knox, S., Clear, A.K., Shannon, R., Coyle, L., Dobson, S., Quigley, A., Nixon, P.: Towards Scatterbox: a context-aware message forwarding platform. In: Fourth International Workshop on Modeling and Reasoning in Context in conjunction with Context 2007, Roskilde, Denmark, pp. 13–24 (August 2007)Google Scholar
  3. 3.
    Thomson, G., Stevenson, G., Terzis, S., Nixon, P.: A self-managing infrastructure for ad-hoc situation determination. In: Smart Homes and Beyond - ICOST2006 4th International Conference On Smart Homes and Health Telematics. Assistive Technology Research Series, pp. 157–164. IOS Press, Amsterdam (2006)Google Scholar
  4. 4.
    Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A Long-Term Evaluation of Sensing Modalities for Activity Recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Krause, A., Smailagic, A., Siewiorek, D.P.: Context-aware mobile computing: Learning context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing 5(2), 113–127 (2006)CrossRefGoogle Scholar
  6. 6.
    Huýnh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: UbiComp 2008: Ubiquitous Computing, 10th International Conference, Seoul, South Korea, pp. 1–10 (September 2008)Google Scholar
  7. 7.
    Clear, A.K., Knox, S., Ye, J., Coyle, L., Dobson, S., Nixon, P.: Integrating multiple contexts and ontologies in a pervasive computing framework. In: C&O 2006: ECAI 2006 Workshop on Contexts and Ontologies: Theory, Practice and Applications, Riva Del Garda, Italy, pp. 20–25 (August 2006)Google Scholar
  8. 8.
    Coutaz, J., Rey, G.: Foundations for a theory of contextors. In: CADUI: 4th International Conference on Computer-Aided Design of User Interfaces, pp. 13–34. Kluwer, Valenciennes (2002)Google Scholar
  9. 9.
    Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing 5(1), 4–7 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: Context is key. Communications of the ACM 48(3), 49–53 (2005)CrossRefGoogle Scholar
  11. 11.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: A unified semantics space model. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 103–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Loke, S.W.: Representing and reasoning with situations for context-aware pervasive computing: a logic programming perspective. The Knowledge Engineering Review 19(3), 213–233 (2004)CrossRefGoogle Scholar
  13. 13.
    Fails, J., Olsen, D.: A design tool for camera-based interaction. In: CHI 2003: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 449–456. ACM Press, New York (2003)Google Scholar
  14. 14.
    Dey, A.K., Hamid, R., Beckmann, C., Li, I., Hsu, D.: A cappella: programming by demonstration of context-aware applications. In: CHI 2004: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 33–40. ACM Press, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explorations Newsletter: Special issue on visual analytics 9(2), 38–46 (2007)CrossRefGoogle Scholar
  16. 16.
    Tenev, T., Rao, R.: Managing multiple focal levels in table lens. In: Infovis 1997: IEEE Symposium on Information Visualization, p. 59. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  17. 17.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: VIS 1990: Proceedings of the 1st conference on Visualization 1990, pp. 361–378. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  18. 18.
    Card, S., Mackinlay, J., Schneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  19. 19.
    Artero, A., de Oliveira, M., Levkowitz, H.: Uncovering clusters in crowded parallel coordinates visualizations. In: IEEE Symposium on Information Visualization, pp. 81–88 (2004)Google Scholar
  20. 20.
    Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: VIS 1999: Proceedings of the conference on Visualization 1999, pp. 43–50. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  21. 21.
    Reas, C., Fry, B.: Processing: a learning environment for creating interactive web graphics. In: SIGGRAPH 2003: ACM SIGGRAPH 2003 Sketches & Applications, p. 1. ACM Press, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adrian K. Clear
    • 1
  • Ross Shannon
    • 1
  • Thomas Holland
    • 1
  • Aaron Quigley
    • 1
  • Simon Dobson
    • 1
  • Paddy Nixon
    • 1
  1. 1.Systems Research GroupUCD DublinIreland

Personalised recommendations