Towards Ontology-Based Formal Verification Methods for Context Aware Systems

  • Hedda R. Schmidtke
  • Woontack Woo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5538)


Pervasive computing systems work within, and rely on, a model of the environment they operate in. In this respect, pervasive computing systems differ from other distributed and mobile computing systems, and require new verification methods. A range of methods and tools exist for verifying distributed and mobile concurrent systems, and for checking consistency of ontology-based context models. As a tool for verifying current pervasive computing systems both are not optimal, since the former cover mainly tree-based location models, whereas the latter are not able to address the dynamic aspects of computing systems. We propose to formally describe pervasive computing systems as distributed concurrent systems operating on the background of a mereotopological context model.


context modelling mereotopology program verification ontologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)CrossRefzbMATHGoogle Scholar
  2. 2.
    Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs. Springer, Heidelberg (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beigl, M., Zimmer, T., Decker, C.: A location model for communicating and processing of context. Personal and Ubiquitous Computing 6(5/6), 341–357 (2002)CrossRefGoogle Scholar
  4. 4.
    Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T.T., Niss, H.: Bigraphical models of context-aware systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 187–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bittner, T., Donnelly, M., Smith, B.: Individuals, universals, collections: On the foundational relations of ontology. In: Varzi, A., Vieu, L. (eds.) Third Conference on Formal Ontology in Information Systems. IOS Press, Amsterdam (2004)Google Scholar
  6. 6.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chalmers, D., Dulay, N., Sloman, M.: Towards reasoning about context in the presence of uncertainty. In: Workshop on Advanced Context Modelling, Reasoning and Management, Nottingham, UK (2004)Google Scholar
  8. 8.
    Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard ontology for ubiquitous and pervasive applications. In: International Conference on Mobile and Ubiquitous Systems: Networking and Services (2004)Google Scholar
  9. 9.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. PhD thesis, Georgia Institute of Technology (2000)Google Scholar
  11. 11.
    Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Euzenat, J.: Granularity in relational formalisms - with application to time and space representation. Computational Intelligence 17(3), 703–737 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24(1-3), 85–168 (1984)CrossRefGoogle Scholar
  14. 14.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  15. 15.
    Galton, A.: Operators vs. arguments: the ins and outs of reification. Synthese 150, 415–441 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gottfried, B., Guesgen, H.W., Hübner, S.: Spatiotemporal reasoning for smart homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes, pp. 16–34 (2006)Google Scholar
  17. 17.
    Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Computing 2, 37–64 (2006)CrossRefGoogle Scholar
  19. 19.
    Jang, S., Ko, E.-J., Woo, W.: Unified user-centric context: Who, where, when, what, how and why. In: Ko, H., Krüger, A., Lee, S.-G., Woo, W. (eds.) Personalized Context Modeling and Management for UbiComp Applications, vol. 149, pp. 26–34 (2005) CEUR-WSGoogle Scholar
  20. 20.
    Jiang, C., Steenkiste, P.: A hybrid location model with a computable location identifier for ubiquitous computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 246–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Langheinrich, M.: Privacy by design - principles of privacy-aware ubiquitous systems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 273–291. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Leonhardt, U.: Supporting Location Awareness in Open Distributed Systems. PhD thesis, Imperial College, London, UK (1998)Google Scholar
  23. 23.
    Ligozat, G.: Generalized intervals: A guided tour. In: Proceedings of the ECAI 1998 Workshop on Spatial and Temporal Reasoning, Brighton, UK (1998)Google Scholar
  24. 24.
    Milner, R.: Bigraphs and their algebra. Electronic Notes on Theoretical Computer Science 209, 5–19 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: A large ontology for the semantic web and its applications. In: AAAI 2002 Workshop on Ontologies and the Semantic Web (2002)Google Scholar
  26. 26.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on region and connection. In: Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  27. 27.
    Ranganathan, A., Campbell, R.H.: Provably correct pervasive computing environments. In: PerCom, pp. 160–169 (2008)Google Scholar
  28. 28.
    Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontologies in a pervasive computing environment. The Knowledge Engineering Review 18(3), 209–220 (2003)CrossRefGoogle Scholar
  29. 29.
    Rashid, U., Schmidtke, H.R., Woo, W.: Managing disclosure of personal health information in smart home healthcare. In: Stephanidis, C. (ed.) International Conference on Universal Access in Human-Computer Interaction, Held as Part of HCI International, pp. 188–197. Springer, Heidelberg (2007)Google Scholar
  30. 30.
    Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal Communications, 10–17 (2001)Google Scholar
  31. 31.
    Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. IEEE Network 8(5), 22–32 (1994)CrossRefGoogle Scholar
  32. 32.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Computers and Graphics 23(6), 893–901 (1999)CrossRefGoogle Scholar
  33. 33.
    Schmidtke, H.R., Woo, W.: A formal characterization of vagueness and granularity for context-aware mobile and ubiquitous computing. In: Youn, H.Y., Kim, M., Morikawa, H. (eds.) UCS 2006. LNCS, vol. 4239, pp. 144–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Schmidtke, H.R., Woo, W.: A size-based qualitative approach to the representation of spatial granularity. In: Veloso, M.M. (ed.) Twentieth International Joint Conference on Artificial Intelligence, pp. 563–568 (2007)Google Scholar
  35. 35.
    Schmidtke, H.R., Hong, D., Woo, W.: Reasoning about models of context: A context-oriented logical language for knowledge-based context-aware applications. Revue d’Intelligence Artificielle 22(5), 589–608 (2008)CrossRefGoogle Scholar
  36. 36.
    Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A context ontology language to enable contextual interoperability. In: Stefani, J.-B., Demeure, I., Hagimont, D. (eds.) DAIS 2003. LNCS, vol. 2893, pp. 236–247. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. 37.
    Varzi, A.C.: Spatial reasoning and ontology: Parts, wholes, and locations. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 945–1038. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: PerCom Workshops, pp. 18–22. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  39. 39.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive computing systems. The Knowledge Engineering Review 22, 315–347 (2007)CrossRefGoogle Scholar
  40. 40.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: A unified semantics space model. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 103–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hedda R. Schmidtke
    • 1
  • Woontack Woo
    • 1
  1. 1.GIST U-VR Lab.GwangjuSouth Korea

Personalised recommendations