Lead Field Space Projection for Spatiotemporal Imaging of Independent Brain Activities

  • Huiling Chan
  • Yong-Sheng Chen
  • Li-Fen Chen
  • Tzu-Hua Chen
  • I-Tzu Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5553)


Magnetoencephalography and electroencephalography are non-invasive instruments that can record magnetic fields and scalp potentials, respectively, induced from neuronal activities. The recordings are superimposed signals contributed from the whole brain. Independent component analysis (ICA) can provide a way of decomposition by maximizing the mutual independence of separated components. Beyond the temporal profile and topography provided by ICA, this work aims to estimate and map the cortical source distribution for each component. The proposed method first constructs a source space using lead field vectors for vertices on the cortical surface. By projecting the specified components to this source space, our method provides the corresponding spatiotemporal maps for these independent brain activities. Experiments using simulated brain activities clearly demonstrate the effectiveness and accuracy of the proposed method.


Independnet Component Analysis Independent Component Independent Component Analysis Cortical Surface Blind Source Separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, T., Girolami, M., Bell, A., Sejnowski, T.: A Unifying Information-Theoretic Framework for Independent Component Analysis. Computers & Mathematics With Applications 39(11), 1–21 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Sejnowski, V.I.T.J.: Removing Electroencephalographic Artifacts by Blind Source Separation. Psychophysiology 37(2), 163–178 (2000)CrossRefGoogle Scholar
  3. 3.
    Kawakatsu, M.: Application of ICA to MEG Noise Reduction. In: 4th International Symposium of Independent Component Analysis and Blind Signal Separation (ICA 2003), pp. 535–541. Tokyo Denki University, Chiba, Japan (2003)Google Scholar
  4. 4.
    Cao, J., Murata, N., Amari, S., Cichocki, A., Takeda, T.: A Robust Approach to Independent Component Analysis of Signals with High-Level Noise Measurements. IEEE Transactions On Neural Networks 14(3), 631–645 (2003)CrossRefGoogle Scholar
  5. 5.
    Escudero, J., Hornero, R., Abasolo, D., Fernandez, A., Lopez-Coronado, M.: Artifact Removal in Magnetoencephalogram Background Activity with Independent Component Analysis. IEEE Transactions On Biomedical Engineering 54(11), 1965–1973 (2007)CrossRefGoogle Scholar
  6. 6.
    Mantini, D., Franciotti, R., Romani, G.L., Pizzella, V.: Improving MEG Source Localizations: An Automated Method for Complete Artifact Removal Based on Independent Component Analysis. NeuroImage 40(1), 160–173 (2008)CrossRefGoogle Scholar
  7. 7.
    Qin, L., Ding, L., He, B.: Motor Imagery Classification by Means of Source Analysis for Brain Computer Interface Applications. Journal of Neural Engineering 1(3), 135–141 (2004)CrossRefGoogle Scholar
  8. 8.
    Breun, P., Grosse-Wentrup, M., Utschick, W., Buss, M.: Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 394–403. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Tsai, A.C., Liou, M., Jung, T.P., Onton, J.A., Cheng, P.E., Huang, C.C., Duann, J.R., Makeig, S.: Mapping Single-Trial EEG Records on the Cortical Surface through a Spatiotemporal Modality. NeuroImage 32(1), 195–207 (2006)CrossRefGoogle Scholar
  10. 10.
    Mosher, J.C., Leahy, R.M., Lewis, P.S.: EEG and MEG: Forward Solutions for Inverse Methods. IEEE Trans. Biomed. Eng. 46(3), 245–259 (1999)CrossRefGoogle Scholar
  11. 11.
    Baillet, S., Mosher, J., Leahy, R.: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine 18(6), 14–30 (2001)CrossRefGoogle Scholar
  12. 12.
    Dale, A.M., Fischl, B., Sereno, M.I.: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 9(2), 179–194 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huiling Chan
    • 1
  • Yong-Sheng Chen
    • 1
  • Li-Fen Chen
    • 2
    • 3
  • Tzu-Hua Chen
    • 1
  • I-Tzu Chen
    • 1
  1. 1.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Institute of Brain ScienceNational Yang-Ming UniversityTaipeiTaiwan
  3. 3.Department of Medical Research and EducationTaipei Veterans General HospitalTaipeiTaiwan

Personalised recommendations