Optimal Reactive Power Dispatch Using Particle Swarms Optimization Algorithm Based Pareto Optimal Set

  • Yan Li
  • Pan-pan Jing
  • De-feng Hu
  • Bu-han Zhang
  • Cheng-xiong Mao
  • Xin-bo Ruan
  • Xiao-yang Miao
  • De-feng Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5553)

Abstract

An improved particle swarms optimization algorithm based on Pareto Optimal set is proposed to optimize the reactive power in power system, which is a multiple objectives optimization problem. The proposed algorithm develops the new fitness assignment and random inertia weight strategy, problem-specific linkages can be learned by examining a randomly chosen collection of points in the search space, the improved algorithm also has the ability to avoid getting trapped in local optima due to prematurity, applying it to the calculation of the power systems of IEEE6-bus and IEEE14-bus, the calculation results prove its effectiveness.

Keywords

Reactive power optimization Pareto Optimal set Fitness assignment Random inertia weight strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, H., Hang, L., Meng, F.: Reactive Power Optimization Based on Genetic Algorithm. In: 1998 International Conference on Power System Technology, pp. 1448–1453. Sciences Press, Beijing (1998)Google Scholar
  2. 2.
    Abido, M.A., Bakhashwain, J.M.: Optimal VAR Dispatch Using a Multiobjective Evolutionary Algorithm. Int. J. Elect. Power Energy Syst. 27, 13–20 (2005)CrossRefGoogle Scholar
  3. 3.
    Ma, J., Lai, L., Yang, Y.: Application of Genetic Algorithm in Reactive Power Optimization. In: Proceeding of the CSEE, pp. 347–353. Electrical Press, Beijing (1995)Google Scholar
  4. 4.
    Wang, H., Xiong, X., Wu, Y.: Power System Reactive Power Optimization Based on Modified Tabu Search Algorithm. Power System Technology 1, 15–18 (2002)Google Scholar
  5. 5.
    Deepak, D., Chilukuri, K.: Particle Swarm Optimization with Adaptive Linkage Learning. In: Proceedings of 2004 International Conference on Evolutionary Computation, pp. 530–535. IEEE Press, New York (2004)Google Scholar
  6. 6.
    Ho, S.L., Yang, S., Ni, G., Edward, W.C., Wong, H.C.: A Particle Swarm Optimization-Based Method For Multiobjective Design Optimizations. IEEE Transactions on Magnetics 41, 1756–1759 (2005)CrossRefGoogle Scholar
  7. 7.
    Eckart, Z., Lothar, T.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions On Evolutionary Computation 3, 257–271 (1999)CrossRefGoogle Scholar
  8. 8.
    Carlos, A., Coello, C., Maximino, S.L.: MOPSO:A Proposal for Multiple Objective Particle Swarm Optimization. IEEE Transation On Evolutionary Computation 2, 1051–1056 (2002)Google Scholar
  9. 9.
    Yu, J., Zhao, B.: Improved Particle Swam Optimization Algorithm for Optimal Power Flow Problems. In: Proceedings of the CSU-EPSA, pp. 83–88. IEEE Press, New York (2005)Google Scholar
  10. 10.
    Natsuki, H., Hitoshi, I.: Particle Swarm Optimization with Gaussian mutation. In: Proceedings of the 2003 IEEE, pp. 72–79. IEEE Press, New York (2003)Google Scholar
  11. 11.
    Liu, Z., Ge, S., Yu, Y.: Optimal Reactive Power Dispatch Using Chaotic Particle Swarm Optimization Algorithm. Automation of Electric Power System 29, 53–57 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yan Li
    • 1
  • Pan-pan Jing
    • 1
  • De-feng Hu
    • 1
  • Bu-han Zhang
    • 1
  • Cheng-xiong Mao
    • 1
  • Xin-bo Ruan
    • 1
  • Xiao-yang Miao
    • 2
  • De-feng Chang
    • 2
  1. 1.Electric Power Security and High Efficiency LabHuazhong University of Science and TechnologyWuhanChina
  2. 2.Xinxiang Electric Power Supply Corporation of Henan Electric Power CompanyXinxiangChina

Personalised recommendations