On-Line Tuning of a Neural PID Controller Based on Variable Structure RBF Network

  • Jianchuan Yin
  • Gexin Bi
  • Fang Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5552)


This paper presents the use of a variable structure radial basis function (RBF) network for identification in PID control scheme. The parameters of PID control are on-line tuned by a sequential learning RBF network, whose hidden units and connecting parameters are adapted on-line. The RBF-network-based PID controller simplifies modeling procedure by learning input-output samples while keep the advantages of traditional PID controller simultaneously. Simulation results of ship course control simulation demonstrate the applicability and effectiveness of the intelligent PID control strategy.


Radial basis function network Variable structure PID control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts, G.N., Sutton, R., Zirilli, A., et al.: Intelligent Ship Autopilots-A Historical Perspective. Mechatr. 13, 1091–1103 (2003)CrossRefGoogle Scholar
  2. 2.
    Apostolikasn, G., Tzafestas, S.: On-line RBFNN Based Identification of Rapidly Time-Varying Nonlinear Systems with Optimal Structure-Adaptation. Math. and Comp. in Simulation 63, 1–13 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chng, E.S., Chen, S., Mulgrew, B.: Gradient Radial Basis Function Networks for Nonlinear and Nonstationary Time Series Prediction. IEEE Trans. Neur. Netw. 7, 190–194 (1996)CrossRefGoogle Scholar
  4. 4.
    Ghosh, J., Nag, A.: An Overview of Radial Basis Function Networks: New Advances in Design. Physica-Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Platt, J.: A Resource Allocating Network for Function Interpolation. Neur. Comput. 3, 213–225 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kadirkamanathan, V., Niranjan, M.: A Function Estimation Approach to Sequential Learning with Neural Network. Neur. Comput. 5, 954–975 (1993)CrossRefGoogle Scholar
  7. 7.
    Lu, Y.W., Sundararajan, N., Saratchandran, P.: Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proc. Contr. Theor. Appl. 144, 202–208 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Huang, G.B., Saratchandran, P., Sundararajan, N.: A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Trans. Neur. Netw. 16, 57–67 (2005)CrossRefGoogle Scholar
  9. 9.
    Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. Neur. Netw. 2, 302–309 (1991)CrossRefGoogle Scholar
  10. 10.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  11. 11.
    Lu, Y.W., Sundararajan, N., Saratchandran, P.: A Sequential Learning Scheme for Function Approximation by Using Minimal Radial Basis Function Neural Networks. Neur. Comput. 9, 461–478 (1997)CrossRefMATHGoogle Scholar
  12. 12.
    Chislett, M.S., Strom, J.T.: Planar Motion Mechanism Tests and Full-Scale Steering and Manoeuvring Predictions for a Mariner Class Vessel. Technical Report, Hydro and Aerodynamics Laboratory (1965)Google Scholar
  13. 13.
    Jia, X.L., Yang, Y.S.: The Mathematic Model of Ship Motion. Dalian Maritime University Press, Dalian (1999)Google Scholar
  14. 14.
    Zhang, Y., Hearn, G.E., Sen, P.: A Neural Network Approach to Ship Track-Keeping Control. IEEE J. Ocean. Eng. 21, 513–527 (1996)CrossRefGoogle Scholar
  15. 15.
    Chen, S., Wang, X.X., Harris, C.J.: NARX-Based Nonlinear System Identification Using Orthogonal Least Squares Basis Hunting. IEEE Trans. Contr. Syst. Tech. 16, 78–84 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jianchuan Yin
    • 1
  • Gexin Bi
    • 1
  • Fang Dong
    • 1
  1. 1.College of NavigationDalian Maritime UniversityDalianChina

Personalised recommendations