A Discrete-Time Recurrent Neural Network with One Neuron for k-Winners-Take-All Operation

  • Qingshan Liu
  • Jinde Cao
  • Jinling Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5551)


In this paper, a discrete-time recurrent neural network with one neuron and global convergence is proposed for k-winners-take-all (kWTA) operation. Comparing with the existing kWTA networks, the proposed network has simpler structure with only one neuron. The global convergence of the network can be guaranteed for kWTA operation. Simulation results are provided to show that the outputs vector of the network is globally convergent to the solution of the kWTA operation.


Discrete-time recurrent neural network Global convergence k-winners-take-all operation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreou, A., Boahen, K., Pouliquen, P., Pavasovic, A., Jenkins, R., Strohbehn, K.: Current-mode subthreshold mos circuits for analog vlsi neural systems. IEEE Trans. Neural Networks 2, 205–213 (1991)CrossRefGoogle Scholar
  2. 2.
    Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computing. Addison-Wesley, Massachusetts (1991)Google Scholar
  3. 3.
    Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194, 283–287 (1976)CrossRefGoogle Scholar
  4. 4.
    Wolfe, W., Mathis, D., Anderson, C., Rothman, J., Gottler, M., Brady, G., Walker, R., Duane, G., Alaghband, G.: K-winner networks. IEEE Trans. Neural Networks 2, 310–315 (1991)CrossRefGoogle Scholar
  5. 5.
    Wang, J.: Analogue winner-take-all neural networks for determining maximum and minimum signals. Int. J. Electron 77, 355–367 (1994)CrossRefGoogle Scholar
  6. 6.
    Urahama, K., Nagao, T.: K-winners-take-all circuit with o(n) complexity. IEEE Trans. Neural Networks 6, 776–778 (1995)CrossRefGoogle Scholar
  7. 7.
    Sekerkiran, B., Cilingiroglu, U.: A cmos k-winners-take-all circuit with o(n) complexity. IEEE Trans. Circuits and Systems-II 46, 1–5 (1999)CrossRefGoogle Scholar
  8. 8.
    Maass, W.: Neural computation with winner-take-all as the only nonlinear operation. Advances in Neural Information Processing Systems 12, 293–299 (1999)Google Scholar
  9. 9.
    Marinov, C., Calvert, B.: Performance analysis for a k-winners-take-all analog neural network: basic theory. IEEE Trans. Neural Networks 14, 766–780 (2003)CrossRefGoogle Scholar
  10. 10.
    Liu, S., Wang, J.: A simplified dual neural network for quadratic programming with its kwta application. IEEE Trans. Neural Networks 17, 1500–1510 (2006)CrossRefGoogle Scholar
  11. 11.
    Liu, Q., Wang, J.: Two k-winners-take-all networks with discontinuous activation functions. Neural Networks 21, 406–413 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Hu, X., Wang, J.: An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application. IEEE Trans. Neural Networks 19, 2022–2031 (2008)CrossRefGoogle Scholar
  13. 13.
    Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley, New York (1993)MATHGoogle Scholar
  14. 14.
    Marinov, C., Hopfield, J.: Stable computational dynamics for a class of circuits with o(n) interconnections capable of kwta and rank extractions. IEEE Trans. Circuits and Systems-I 52, 949–959 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic, New York (1982)MATHGoogle Scholar
  16. 16.
    LaSalle, J.: The Stability of Dynamical Systems. Society for Industrial Mathematics (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qingshan Liu
    • 1
  • Jinde Cao
    • 2
  • Jinling Liang
    • 2
  1. 1.School of AutomationSoutheast UniversityNanjingChina
  2. 2.Department of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations