Advertisement

Biological Applications of FM-AFM in Liquid Environment

  • Takeshi FukumaEmail author
  • Suzanne P. Jarvis
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Atomic force microscopy (AFM) was noted for its potential to study biological materials shortly after its first development in 1986 due to its ability to image insulators in liquid environments. The subsequent application of AFM to biology has included lateral characterization via imaging, unraveling of molecules under a tensile load and application of a force either to measure mechanical properties under the tip or to instigate a biochemical response in living cells. To date, the application of frequency modulation AFM (FM-AFM) specifically to biological materials has been limited to relatively few research groups when compared to the extensive application of AFM to biological materials. This is probably due to the perceived complexity of the technique both by researchers in the life sciences and those manufacturing liquid AFMs for biological research. In this chapter, we aim to highlight the advantages of applying the technique to biological materials.

Keywords

Oscillation Amplitude DPPC Bilayer Single Molecule Spectroscopy Spurious Resonance Single Molecule Force Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.J. Giessibl, Phys. Rev. B 56, 16010 (1997)CrossRefGoogle Scholar
  2. 2.
    T.R. Albrecht, P. Grütter, D. Horne, D. Ruger, J. Appl. Phys. 69, 668 (1991)CrossRefGoogle Scholar
  3. 3.
    U. Dürig, Appl. Phys. Lett. 75, 433 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)CrossRefGoogle Scholar
  5. 5.
    T. Uchihashi et al., Appl. Phys. Lett. 85, 3575 (2004)CrossRefGoogle Scholar
  6. 6.
    J.E. Sader, S.P. Jarvis, Phys. Rev. B 74, 195424 (2006)CrossRefGoogle Scholar
  7. 7.
    G.B. Kaggwa, J.I. Kilpatrick, J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 93, 011909 (2008)CrossRefGoogle Scholar
  8. 8.
    S.P. Jarvis, A. Oral, T.P. Weihs, J.B. Pethica, Rev. Sci. Instrum. 64, 3515 (1993)CrossRefGoogle Scholar
  9. 9.
    A. Buguin, O.D. Roure, P. Silberzan, Appl. Phys. Lett. 78, 2982 (2001)CrossRefGoogle Scholar
  10. 10.
    M.J. Higgins, C.K. Riener, T. Uchihashi, J.E. Sader, Nanotechnology 16, S85 (2005)CrossRefGoogle Scholar
  11. 11.
    A.D.L. Humphris, J. Tamayo, M.J. Miles, Langmuir 16, 7891 (2000)CrossRefGoogle Scholar
  12. 12.
    A.D.L. Humphris, M. Antognozzi, T.J. McMaster, M.J. Miles, Langmuir 18, 1729 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Higgins, J.E. Sader, S.P. Jarvis, Biophys. J. 90, 640 (2006)CrossRefGoogle Scholar
  14. 14.
    J. Tamayo, A.D.L. Humphris, R.J. Owen, M.J. Miles, Biophys. J. 81, 526 (2001)CrossRefGoogle Scholar
  15. 15.
    S.P. Jarvis et al., J. Phys. Chem. B 104, 6091 (2000)CrossRefGoogle Scholar
  16. 16.
    H. Sekiguchi et al., Appl. Surf. Sci. 210, 61 (2003)CrossRefGoogle Scholar
  17. 17.
    C.-W. Yang et al., Nanotechnology 18, 084009 (2007)CrossRefGoogle Scholar
  18. 18.
    D. Ebling, H. Hölscher, B. Anczykowski, Appl. Phys. Lett. 89, 203511 (2006)CrossRefGoogle Scholar
  19. 19.
    B.W. Hoogenboom et al., Appl. Phys. Lett. 88, 193109 (2006)CrossRefGoogle Scholar
  20. 20.
    B.W. Hoogenboom, K. Suda, A. Engel, D. Fotiadis, 370, 246 (2007)Google Scholar
  21. 21.
    M. Higgins et al., Biophys. J. 91, 2532 (2006)CrossRefGoogle Scholar
  22. 22.
    F.J. Giessibl, Science 267, 68 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Kitamura, M. Iwatsuki, Jpn. J. Appl. Phys. Part II 34, L145 (1995)CrossRefGoogle Scholar
  24. 24.
    T. Fukuma et al., Rev. Sci. Instrum. 76, 053704 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, Appl. Phys. Lett. 87, 034101 (2005)CrossRefGoogle Scholar
  26. 26.
    T. Fukuma et al., Appl. Phys. Lett. 86, 034103 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Morita, R. Wiesendanger, E. Meyer (Eds.), Noncontact Atomic Force Microscopy (Nanoscience and Technology) (Springer, Berlin, 2002)Google Scholar
  28. 28.
    F.J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart, Appl. Surf. Sci. 140, 352 (1999)CrossRefGoogle Scholar
  29. 29.
    T. Fukuma, S.P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006)CrossRefGoogle Scholar
  30. 30.
    T. Fukuma, M.J. Higgins, S.P. Jarvis, Biophys. J. 92, 3603 (2007)CrossRefGoogle Scholar
  31. 31.
    T. Fukuma, M.J. Higgins, S.P. Jarvis, Phys. Rev. Lett. 98, 106101 (2007)CrossRefGoogle Scholar
  32. 32.
    T. Fukuma, A.S. Mostaert, S.P. Jarvis, Nanotechnology 19, 384010 (2008)CrossRefGoogle Scholar
  33. 33.
    T. Fukuma, J.I. Kilpatrick, S.P. Jarvis, Rev. Sci. Instrum. 77, 123703 (2006)CrossRefGoogle Scholar
  34. 34.
    F. Ohnesorge, G. Binnig, Science 260, 1451 (1993)CrossRefGoogle Scholar
  35. 35.
    F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Science 289, 422 (2000)CrossRefGoogle Scholar
  36. 36.
    M. Rappolt, G. Pabst, H. Amenitsch, P. Laggner, Coll. Surf. A 183–185, 171 (2001)CrossRefGoogle Scholar
  37. 37.
    M. Ross, C. Steinen, H.-J. Galla, A. Janshoff, Langmuir 17, 2437 (2001)CrossRefGoogle Scholar
  38. 38.
    J.T. Groves, S.G. Boxer, H.M. McConnell, J. Phys. Chem. B 104, 11409 (2000)CrossRefGoogle Scholar
  39. 39.
    S. Ohki, N. Düzgüneş, K. Leonards, Biochemistry 21, 2127 (1982)CrossRefGoogle Scholar
  40. 40.
    S. Ohki, K. Arnold, Coll. Surf. B 18, 83 (2000)CrossRefGoogle Scholar
  41. 41.
    L. Herbette, C.A. Napolitano, R.V. McDaniel, Biophys. J. 46, 677 (1984)CrossRefGoogle Scholar
  42. 42.
    C. Altenbach, J. Seelig, Biochemistry 23, 3913 (1984)CrossRefGoogle Scholar
  43. 43.
    T.R. Hermann, A.R. Jayaweera, A.E. Shamoo, Biochemistry 25, 5834 (1986)CrossRefGoogle Scholar
  44. 44.
    H. Binder, O. Zschörnig, Chem. Phys. Lipids 115, 39 (2002)CrossRefGoogle Scholar
  45. 45.
    M.L. Berkowitz, D.L. Bostick, S. Pandit, Chem. Rev. 106, 1527 (2006)CrossRefGoogle Scholar
  46. 46.
    S. Garcia-Manyes, G. Oncins, F. Sanz, Biophys. J. 89, 1812 (2005)CrossRefGoogle Scholar
  47. 47.
    R.A. Böckmann, A. Hac, T. Heimburg, H. Grubmüller, Biophys. J. 85, 1647 (2003)CrossRefGoogle Scholar
  48. 48.
    P. Westermark et al., Amyloid 12, 1 (2005)CrossRefGoogle Scholar
  49. 49.
    P. Westermark, FEBS J. 272, 5942 (2005)CrossRefGoogle Scholar
  50. 50.
    P. Westermark, C. Wernstedt, E. Wilander, D.W. Hayden, Proc. Natl. Acad. Sci. USA 84, 3881 (1987)CrossRefGoogle Scholar
  51. 51.
    O.S. Makin, L.C. Serpell 335, 1279 (2004)Google Scholar
  52. 52.
    H. Hölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger, Appl. Phys. Lett. 81, 4428 (2002)CrossRefGoogle Scholar
  53. 53.
    M. Abe et al., Appl. Phys. Lett. 90, 203103 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Frontier Science OrganizationKanazawa UniversityKanazawaJapan

Personalised recommendations