Advertisement

Applications of Spectral-Domain OCT in AMD

  • Cynthia A. Toth
  • Sina Farsiu
  • Aziz Khanifar
  • Gabriel Chong

Abstract

High-resolution optical imaging of objects hidden in scattering media such as the human eye is a challenging and important problem with many industrial and medical applications.

Keywords

Optical Coherence Tomography Retinal Pigment Epithelial Macular Edema Optical Coherence Tomography Image Subretinal Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farsiu S, Christofferson J, Eriksson B, Milanfar P, Friedlander B, Shakouri A, Nowak R. Statistical detection and imaging of objects hidden in turbid media using ballistic photons. Applied Opt 2007;46:5805–5822.CrossRefGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA. Optical coherence tomography. Science 1991:254:1178–1181.PubMedCrossRefGoogle Scholar
  3. 3.
    Dunsby C, French PMW. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J Phys D: Appl Phys 2003;36:207–227.CrossRefGoogle Scholar
  4. 4.
    Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys 2003;66:239–303.CrossRefGoogle Scholar
  5. 5.
    Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2006;113:2054–2065.PubMedCrossRefGoogle Scholar
  6. 6.
    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005:112:1734–1746.PubMedCrossRefGoogle Scholar
  7. 7.
    Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS. Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 2006:90:191–197.PubMedCrossRefGoogle Scholar
  8. 8.
    Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.PubMedGoogle Scholar
  9. 9.
    Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.PubMedGoogle Scholar
  10. 10.
    Toth CA, Birngruber R, Boppart SA, Hee MR, Fujimoto JG, DiCarlo CD, Swanson EA, Cain CP, Narayan DG, Noojin GD, Roach WP. Argon laser retinal lesions evaluated in vivo by optical coherence tomography. Am J Ophthalmol 1997;123:188–198.PubMedGoogle Scholar
  11. 11.
    Toth CA, Narayan DG, Boppart SA, Hee MR, Fujimoto JG, Birngruber R, Cain CP, DiCarlo CD, Roach WP. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol 1997;115:1425–1428.PubMedGoogle Scholar
  12. 12.
    Gallemore RP, Jumper JM, McCuen II BW, Jaffe GJ, Postel EA, Toth CA. Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 2000;20:115–120.PubMedCrossRefGoogle Scholar
  13. 13.
    Ting TD, Oh M, Cox TA, Meyer CH, Toth CA. Decreased visual acuity associated with cystoid macular edema in neovascular age-related macular degeneration. Arch Ophthalmol 2002;120:731–737.PubMedGoogle Scholar
  14. 14.
    Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, Izatt JA. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 2001;119:1179–1185.PubMedGoogle Scholar
  15. 15.
    Nolan WP, See JL, Chew PT, Friedman DS, Smith SD, Radhakrishnan S, Zheng C, Foster PJ, Aung T. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology 2007;114:33–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol 2005;139:509–17.PubMedCrossRefGoogle Scholar
  17. 17.
    de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28:2067–2069.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen TC, Cense B, Pierce MC, Nassif N, Park BH, Yun SH, White BR, Bouma BE, Tearney GJ, de Boer JF. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Arch Ophthalmol 2005:123:1715–1720.PubMedCrossRefGoogle Scholar
  19. 19.
    Costa RA, Skaf M, Melo LA, Calucci D, Cardillo JA, Castro JC, Huang D, Wojtkowski M. Retinal assessment using optical coherence tomography. Prog Retin Eye Res 2006;25:325–353.PubMedCrossRefGoogle Scholar
  20. 20.
    Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express 2005;11:889–894.CrossRefGoogle Scholar
  21. 21.
    Choma MA, Sarunic MV, Yang C, Izatt, JA. Sensitivity advantage of swept-source and fourier-domain optical coherence tomography. Opt Express 2003;11:2183–2189.PubMedGoogle Scholar
  22. 22.
    Stopa M, Bower BA, Davies E, Izatt JA, Toth CA. Correlation of pathologic features in spectral domain OCT imaging with conventional retinal studies. Retina 2008;28:298–308.PubMedCrossRefGoogle Scholar
  23. 23.
    Jiao S, Knighton R, Huang X, Gregori G, Puliafito C. Simultaneous acquisition of sectional and fundus opthalmic images with spectral-domain optical coherence tomography. Opt Express 2005;13:444–452.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang N, Hoffmeyer GC, Young ES, Burns RE, Winter KP, Stinnett SS, Toth CA, Jaffe GJ. Optical coherence tomography reader agreement in neovascular age-related macular degeneration. Am J Ophthalmol 2007;144:37–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Farsiu S, Elad M, Milanfar P. Constrained, globally optimal, multi-frame motion estimation. Proc IEEE Workshop on Statistical Signal Processing 2005;July:1396–1401.CrossRefGoogle Scholar
  26. 26.
    Haeker M, Sonka M, Kardon R, Shah VA, Wu X, Abràmoff MD. Automated segmentation of intraretinal layers from macular optical coherence tomography images. Proc SPIE 2007;6512:651214-1 to 651214-11.Google Scholar
  27. 27.
    Age-related eye disease study research group . The age-related eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the age-related eye disease study report number 6. Am J Ophthalmol 2001;132:668–681.Google Scholar
  28. 28.
    Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV. Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 2004;78:243–256.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 2002;134:411–431.PubMedCrossRefGoogle Scholar
  30. 30.
    Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullin RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 2001;20: 705–732.PubMedCrossRefGoogle Scholar
  31. 31.
    Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Retina Society, October 2007, Boston, MA, USA.Google Scholar
  32. 32.
    Schmidt-Erfurth U, Leitgeb RA, Michels S, Povazay B, Sacu S, Hermann B, Ahlers C, Sattmann H, Scholda C, Fercher AF, Drexler W. Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci. 2005:46:3393–402.PubMedCrossRefGoogle Scholar
  33. 33.
    Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 2007;143:463–472.PubMedCrossRefGoogle Scholar
  34. 34.
    Bindewald A, Schmitz-Valckenberg S, Jorzik JJ, Dolar-Szczasny J, Sieber H, Keilhauer C, Weinberger AWA, Dithmar S, Pauleikhoff D, Mansmann U, Wolf S, Holz FG. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol 2005:89: 874–878.PubMedCrossRefGoogle Scholar
  35. 35.
    Rasband WS, Jmage J, U. S. National Institutes of Health, Bethesda, Maryland, USA 1997–2007, http://rsb.info.nih.gov/ij/.Google Scholar
  36. 36.
    Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ. Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am 2007;24:1901–1910.CrossRefGoogle Scholar
  37. 37.
    Fernandez DC, Salinas HM, Puliafito CA. Automated detection of retinal layer structures on optical coherence tomography images. Opt Express 2005;13:10200–10216.CrossRefGoogle Scholar
  38. 38.
    Thévenaz P, Ruttimann UE, Unser M. A pyramid approach to sub pixel registration based on intensity. IEEE Trans Image Process 1998;7:27–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction. IEEE Trans Image Process 2007;16:349–366.PubMedCrossRefGoogle Scholar
  40. 40.
    Fernández DC. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina. IEEE Transactions on medical imaging 2005;24:929–945.PubMedCrossRefGoogle Scholar
  41. 41.
    Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattem Anal Mach Inteil 1990;12:629–639.CrossRefGoogle Scholar
  42. 42.
    Xu C, Prince JL. Generalized gradient vector flow external forces for active contours. Signal Process, 1998;71:131–139.CrossRefGoogle Scholar
  43. 43.
    Farsiu S, Chiu JC, Izatt JA, Toth CA. Fast detection and segmentation of drusen in retinal optical coherence tomography images. Proc SPIE Photonics West, San Jose, CA, 2008.Google Scholar
  44. 44.
    van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 2007;26:57–77.PubMedCrossRefGoogle Scholar
  45. 45.
    Zawadzki R, Jones S, Olivier S, Zhao M, Bower B, Izatt J, Choi S, Laut S, Werner J. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 2005;13:8532–8546.PubMedCrossRefGoogle Scholar
  46. 46.
    Hammer DX, Iftimia NV, Bigelow CE, Ustun TE, Bloom B, Ferguson RD, Burns SA. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system. Proc SPIE 2007;Volume 6426.Google Scholar
  47. 47.
    Yazdanfar S, Rollins AM, Izatt JA. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol 2003;121:235–239.PubMedGoogle Scholar
  48. 48.
    Cense B, Chen TC, Nassif N, Pierce MC, Yun SH, Park BH, Bouma BE, Tearney GJ, de Boer JF. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Bull Soc Belge Ophthalmol 2006;302:123–132.Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2009

Authors and Affiliations

  • Cynthia A. Toth
    • 1
  • Sina Farsiu
    • 2
  • Aziz Khanifar
    • 3
  • Gabriel Chong
    • 1
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Research Associate in OphthalmologyDuke University Medical CenterDurhamUSA
  3. 3.Clinical Associate in OphthalmologyDuke University Medical CenterDurhamUSA

Personalised recommendations