Formal Certification of ElGamal Encryption

A Gentle Introduction to CertiCrypt
  • Gilles Barthe
  • Benjamin Grégoire
  • Sylvain Heraud
  • Santiago Zanella Béguelin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5491)

Abstract

CertiCrypt [1] is a framework that assists the construction of machine-checked cryptographic proofs that can be automatically verified by third parties. To date, CertiCrypt has been used to prove formally the exact security of widely studied cryptographic systems, such as the OAEP padding scheme and the Full Domain Hash digital signature scheme. The purpose of this article is to provide a gentle introduction to CertiCrypt. For concreteness, we focus on a simple but illustrative example, namely the semantic security of the Hashed ElGamal encryption scheme in both, the standard and the random oracle model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: Proceedings of the 36th ACM Symposium on Principles of Programming Languages. ACM Press, New York (2009)Google Scholar
  2. 2.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Stern, J.: Why provable security matters? In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report 2005/181 (2005)Google Scholar
  6. 6.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)Google Scholar
  7. 7.
    The Coq development team: The Coq Proof Assistant Reference Manual v8.2 (2008), http://coq.inria.fr
  8. 8.
    Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential programs. Higher-Order and Symbolic Computation 14(1), 59–91 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Science of Computer Programming (2008)Google Scholar
  10. 10.
    Benton, N.: Simple relational correctness proofs for static analyses and program transformations. In: Proceedings of the 31th ACM Symposium on Principles of Programming Languages, pp. 14–25. ACM Press, New York (2004)Google Scholar
  11. 11.
    Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras. In: Handbook of Process Algebra, pp. 685–711. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  12. 12.
    Nowak, D.: A framework for game-based security proofs. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 319–333. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Barthe, G., Cederquist, J., Tarento, S.: A machine-checked formalization of the generic model and the random oracle model. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 385–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based cryptographic proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Benjamin Grégoire
    • 2
    • 3
  • Sylvain Heraud
    • 3
  • Santiago Zanella Béguelin
    • 2
    • 3
  1. 1.IMDEA SoftwareMadridSpain
  2. 2.Microsoft Research - INRIA Joint CentreFrance
  3. 3.INRIA Sophia Antipolis - MéditerranéeFrance

Personalised recommendations