Gravity-Based Local Clock Synchronization in Wireless Sensor Networks

(Work in Progress)
  • Markus Wälchli
  • Reto Zurbuchen
  • Thomas Staub
  • Torsten Braun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5550)

Abstract

Contention-based MAC protocols follow periodic listen/sleep cycles. These protocols face the problem of virtual clustering if different unsynchronized listen/sleep schedules occur in the network, which has been shown to happen in wireless sensor networks. To interconnect these virtual clusters, border nodes maintaining all respective listen/sleep schedules are required. However, this is a waste of energy, if locally a common schedule can be determined. We propose to achieve local synchronization with a mechanism that is similar to gravitation. Clusters represent the mass, whereas synchronization messages sent by each cluster represent the gravitation force of the according cluster. Due to the mutual attraction caused by the clusters, all clusters merge finally. The exchange of synchronization messages itself is not altered by LACAS. Accordingly, LACAS introduces no overhead. Only a not yet used property of synchronization mechanisms is exploited.

Keywords

Wireless sensor networks synchronization virtual clustering Networking 2009 

References

  1. 1.
    Li, Y., Ye, W., Heidemann, J.: Energy and latency control in low duty cycle MAC protocols. In: Proc. of the IEEE Wireless Communications and Networking Conference (WCNC 2005), New Orleans, LA, March 2005, pp. 676–682 (2005)Google Scholar
  2. 2.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking 12(3), 493–506 (2004)CrossRefGoogle Scholar
  3. 3.
    van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proc. of the 1st international conference on Embedded networked sensor systems (SenSys 2003), Los Angeles, CA, pp. 171–180 (2003)Google Scholar
  4. 4.
    Sun, Y., Du, S., Gurewitz, O., Johnson, D.B.: DW-MAC: a low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. In: Proc. of the 9th ACM international symposium on Mobile ad hoc networking and computing (MobiHoc 2008), Hong Kong, China, pp. 53–62 (2008)Google Scholar
  5. 5.
    van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for wireless sensor networks: Reducing preamble transmissions and transceiver state switches. In: Proc. of the International Conference on Networked Sensing Systems (INSS 2004), Tokyo, Japan (June 2004)Google Scholar
  6. 6.
    Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.: Energy-efficient collision-free medium access control for wireless sensor networks. In: Proc. of the 1st international conference on Embedded networked sensor systems (SenSys 2003), Los Angeles, CA, pp. 181–192 (2003)Google Scholar
  7. 7.
    El-Hoiydi, A., Decotignie, J.-D.: WiseMAC: An ultra low power MAC protocol for the downlink of infrastructure wireless sensor networks. In: Proc. of the 9th IEEE International Symposium on Computers and Communications (ISCC 2004), Alexandria, Egypt, June 2004, vol. 1, pp. 244–251 (2004)Google Scholar
  8. 8.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. of the Second ACM Conference on Embedded Networked Sensor Systems (SenSys 2004), Baltimore, MD, USA, November 2004, pp. 95–107 (2004)Google Scholar
  9. 9.
    Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proc. of the 4th international conference on Embedded networked sensor systems (SenSys 2006), Boulder, Colorado, USA, pp. 307–320 (2006)Google Scholar
  10. 10.
    Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: a receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In: Proc. of the 6th ACM conference on Embedded network sensor systems (SenSys 2008), Raleigh, NC, USA, pp. 1–14 (2008)Google Scholar
  11. 11.
    Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wireless sensor networks. In: Proc. of the First ACM Conference on Embedded Networked Sensor Systems (SenSys 2003), Los Angeles, CA, November 2003, pp. 1–13 (2003)Google Scholar
  12. 12.
    Varga, A.: Omnet++: a component-based, modular and open-architecture simulation environment (2008)Google Scholar
  13. 13.
    Wälchli, M., Zurbuchen, R., Staub, T., Braun, T.: Coordinated sleep MAC for energy-constrained wireless sensor networks. In: Proc. IEEE Global Communications Conference (IEEE GLOBECOM 2009) (2009) (submitted)Google Scholar
  14. 14.
    Scatterweb: The self-organizing wireless communication platform (October 2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Markus Wälchli
    • 1
  • Reto Zurbuchen
    • 1
  • Thomas Staub
    • 1
  • Torsten Braun
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations