Extended Cooperative Balanced Space-Time Block Coding for Increased Efficiency in Wireless Sensor Networks

(Work in Progress)
  • Ali Ekşim
  • Mehmet Ertuğrul Çelebi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5550)


Diversity techniques for communications among sensors are very effective tool to increase reception quality and battery lifetimes. A well-known method to increase diversity in cooperative communications is sensor (relay) selection. However, sensor selection method may lead to the selection of the same (near) sensor for transmission over a long period. One of the alternative techniques to sensor selection is cooperative balanced space-time block coding which utilizes every sensor in sight, thus, distributes the energy consumption among many sensors. Furthermore, it guarantees full diversity for any number of relay sensors. In this work, we consider dual-hop amplify-and-forward wireless sensor network and extend the cooperative balanced space-time block code family to improve its performance. In the proposed scheme, a larger number of codes can be generated for improved coding gain, and better signal-to-noise ratio improvement can be obtained compared to sensor selection schemes.


Balanced space-time block codes Cooperative communications Relay selection Wireless sensor networks 


  1. 1.
    Vucetic, B., Yuan, J.: Space-Time Coding. John Wiley & Sons, Chichester (2003)CrossRefGoogle Scholar
  2. 2.
    Liu, L., Lim, M.-S.: Selective receiver switching scheme for space time block coding with full code rate and non-orthogonal design. IET Commun. 2(5), 664–672 (2008)CrossRefGoogle Scholar
  3. 3.
    Yousafzai, A.K., Nakhai, M.R.: Reduced complexity detection technique for layered space time block coded multiple-input multiple-output orthogonal frequency division multiplexing. IET Commun. 3(1), 115–122 (2009)CrossRefGoogle Scholar
  4. 4.
    Çelebi, M.E., Şahin, S., Aygölü, Ü.: Balanced space-time block coding: An efficient way to increase diversity with feedback. IEE Proc-Commun. MIMO Wireless and Mobile Commun. 153(4) (2006)Google Scholar
  5. 5.
    Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45, 1456–1467 (1999)Google Scholar
  6. 6.
    Jafarkhani, H.: A quasi-orthogonal space-time block code. IEEE Trans. Commun. 49, 1–4 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Tirkkonen, O., Hottinen, A.: Complex space-time block codes for four Tx antennas. In: Proc. GLOBECOM, pp. 1005–1009. IEEE Press, San Fransisco (2000)Google Scholar
  8. 8.
    Su, W., Xia, X.G.: On space-time block codes from complex orthogonal designs. Wirel. Pers. Commun. 25, 1–26 (2003)CrossRefGoogle Scholar
  9. 9.
    Laneman, J.N., Wornell, G.W., Tse, D.N.C.: An efficient protocol for realizing cooperative diversity in wireless networks. In: Proc. IEEE ISIT, Washington D.C. IEEE Press, Los Alamitos (2001)Google Scholar
  10. 10.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity part I: System description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)CrossRefGoogle Scholar
  11. 11.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity part II: Implementation aspects and performance analysis. IEEE Trans. Commun. 51(11), 1939–1948 (2003)CrossRefGoogle Scholar
  12. 12.
    Nabar, R.U., Bolcskei, H., Kneubuhler, F.W.: Fading relay channels: Performance limits and space-time signal design. IEEE J. Select. Areas Commun., 1099–1109 (2004)Google Scholar
  13. 13.
    Tang, Y., Valenti, M.C.: Coded transmit macrodiversity: Block space-time codes over distributed antennas. In: IEEE Veh. Technol. Conference, pp. 1435–1438. IEEE Press, Los Alamitos (2001)Google Scholar
  14. 14.
    Ekşim, A., Çelebi, M.E.: Diversity enhancement with cooperative balanced space-time block coding. In: Proc. of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007). IEEE Press, Athens (2007)Google Scholar
  15. 15.
    Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun. 16, 1451–1458 (1998)CrossRefGoogle Scholar
  16. 16.
    Jing, Y., Hassibi, B.: Distributed space-time coding in wireless relay networks. IEEE Trans. on Wirel. Commun. 5(12) (2006)Google Scholar
  17. 17.
    Michalopoulos, D.S., Karagiannidis, G.K., Tsiftsis, T.A., Mallik, R.K.: Distributed transmit antenna selection (DTAS) under performance or energy consumption constraints. IEEE Trans. Wireless Commun. 7, 1168–1173 (2008)CrossRefGoogle Scholar
  18. 18.
    Luo, J., Blum, R.S., Greenstein, L.J., Haimovich, A.M.: Link-failure probabilities for practical cooperative relay networks. In: Proc. of the IEEE vehicular Technology Conference (VTC 2005 Spring). IEEE Press, Stockholm (2005)Google Scholar
  19. 19.
    Gore, D., Paulraj, A.: MIMO antenna subset selection with space-time coding. IEEE Trans. Signal Process 50, 2580–2588 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Ali Ekşim
    • 1
  • Mehmet Ertuğrul Çelebi
    • 2
  1. 1.Tubitak-UEKAEGebzeTurkey
  2. 2.Department of Electronics and Communication EngineeringIstanbul Technical University,MaslakIstanbulTurkey

Personalised recommendations