Collateral Damage: The Impact of Optimised TCP Variants on Real-Time Traffic Latency in Consumer Broadband Environments

  • Lawrence Stewart
  • Grenville Armitage
  • Alana Huebner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5550)


In recent years a number of TCP variants have emerged to optimise some aspect of data transport where high delay-bandwidth product paths are common. We evaluate a different scenario - latency-sensitive UDP-based traffic sharing a consumer-grade ‘broadband’ link with one or more TCP flows. In particular we compare Linux implementations of NewReno, H-TCP and CUBIC. We find that dynamic latency fluctuations induced by each TCP variant is a more significant differentiator than ‘goodput’ (useful throughput), and that CUBIC induces far more latency than either H-TCP or NewReno when multiple TCP flows are active concurrently. This potential for ‘collateral damage’ should influence future efforts to re-design TCP for widespread deployment.


TCP congestion control latency interactive broadband 


  1. 1.
    Postel, J.: Transmission Control Protocol. RFC 793, Standard, Updated by RFC 3168. (September 1981),
  2. 2.
    Floyd, S., Henderson, T., Gurtov, A.: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard) (April 2004),
  3. 3.
    Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (Proposed Standard), Updated by RFC 3390 (April 1999),
  4. 4.
    Fomenkov, M., Keys, K., Moore, D., Claffy, K.: Longitudinal study of Internet traffic in 1998-2003. In: Winter International Symposium on Information and Communication Technologies (WISICT), Cancun, Mexico (January 2004),
  5. 5.
    Floyd, S.: Congestion Control Principles. RFC 2914 (Best Current Practice) (September 2000),
  6. 6.
    Rhee, I., Xu, L., Ha, S.: CUBIC for Fast Long-Distance Networks. Technical report, North Carolina State University (August 2008),
  7. 7.
    Ha, S., Rhee, I., Xu, L.: CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Operating System Review 42(5), 64–74 (2008), CrossRefGoogle Scholar
  8. 8.
    Leith, D.: H-TCP: TCP Congestion Control for High Bandwidth-Delay Product Paths. Technical report, Hamilton Institute (April 2008),
  9. 9.
    Li, Y.T., Leith, D., Shorten, R.N.: Experimental evaluation of tcp protocols for high-speed networks. IEEE/ACM Trans. Netw. 15(5), 1109–1122 (2007), CrossRefGoogle Scholar
  10. 10.
    Jacobson, V.: Congestion avoidance and control. In: SIGCOMM 1988: Symposium proceedings on Communications architectures and protocols, pp. 314–329. ACM, New York (1988), Google Scholar
  11. 11.
    Braden, R.: Requirements for Internet Hosts - Communication Layers. RFC 1122, Standard, Updated by RFC 1349 (October 1989),
  12. 12.
    Internet Research Task Force: (Internet Congestion Control Research Group), (accessed November 8, 2008),
  13. 13.
    Internet Research Task Force: (Transport Modeling Research Group), (accessed November 8, 2008)
  14. 14.
    Andrew, L., Marcondes, C., Floyd, S., Dunn, L., Guillier, R., Gang, W., Eggert, L., Ha, S., Rhee, I.: Towards a Common TCP Evauation Suite. In: Sixth International Workshop on Protocols for Fast Long-Distance Networks, Manchester, GB (March 2008),
  15. 15.
    Andrew, L., Atov, I., Kennedy, D., Wydrowski, B.: Evaluation of FAST TCP on Low-Speed DOCSIS-based Access Networks. In: IEEE TENCON 2005, Melbourne, Australia (November 2005),
  16. 16.
    Armitage, G., Stewart, L., Welzl, M., Healy, J.: An Independent H-TCP Implementation Under FreeBSD 7.0: Description and Observed Behaviour. SIGCOMM Comput. Commun. Rev. 38(3), 27–38 (2008), CrossRefGoogle Scholar
  17. 17.
    Armitage, G.: An experimental estimation of latency sensitivity in multiplayer quake 3. In: 11th IEEE International Conference on Networks (ICON 2003), Sydney, Australia, pp. 137–141 (2003),
  18. 18.
    Helder, G.K.: Customer evaluation of telephone circuits with transmission delay. Bell System Technical Journal 45, 1157–1191 (1966)CrossRefGoogle Scholar
  19. 19.
    Kitawaki, N., Itoh, K.: Pure delay effects on speech quality in telecommunications. IEEE Journal on Selected Areas in Communications 9(4), 586–593 (1991)CrossRefGoogle Scholar
  20. 20.
    Markopoulou, A., Tobagi, F., Karam, M.: Assessing the quality of voice communications over internet backbones. IEEE/ACM Transactions on Networking 11(5), 747–760 (2003)CrossRefGoogle Scholar
  21. 21.
    Claypool, M., Kinicki, R., Li, M., Nichols, J., Wu, H.: Inferring Queue Sizes in Access Networks by Active Measurement. In: Passive and Active Measurement Workshop, Antibes Juan-les-Pins, France (April 2004),
  22. 22.
    Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing residential broadband networks. In: IMC 2007: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pp. 43–56. ACM, New York (2007), Google Scholar
  23. 23.
    Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols. ACM SIGCOMM Computer Communication Review 27(1), 31–41 (1997), CrossRefGoogle Scholar
  24. 24.
    Mathis, M., Heffner, J., Reddy, R.: Web100: extended tcp instrumentation for research, education and diagnosis. SIGCOMM Comput. Commun. Rev. 33(3), 69–79 (2003)CrossRefGoogle Scholar
  25. 25.
    Unknown (The Web100 Project), (accessed November 19, 2008)
  26. 26.
    Unknown: (Iperf), (accessed November 19, 2008)
  27. 27.
    Turner, A.: Tcpreplay, (accessed December 4, 2008)
  28. 28.
    Leith, D.: [2.6.27] tcp_htcp: last_cong bug fix, (accessed December 4, 2008)
  29. 29.
    Ostermann, S.: tcptrace, (accessed December 4, 2008)

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Lawrence Stewart
    • 1
  • Grenville Armitage
    • 1
  • Alana Huebner
    • 1
  1. 1.Swinburne University of TechnologyMelbourneAustralia

Personalised recommendations