Sensitivity Analysis of Discontinuous Multidisciplinary Models: Two Examples

Conference paper


Discontinuous system modeling is a present topic when working with practical models of technical systems. Numerical algorithms can only handle models with a given structure of the discontinuity effects. In the paper we show some examples that motivate the investigation of extended problem classes. The sensitivity analysis of all the systems gives important information about the dependency of the model solution on model parameters like controller parameters. We discuss models with nonsmooth switching functions and models with several switching functions influencing the model dynamics at the same time.


Switching Function Practical Model Linear Ordinary Differential Equation Switching Surface Discontinuous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otter, M., Elmqvist, H., Mattsson, S.E.: Multidomain Modeling with Modelica. In Fishwick, P., ed.: CRC Handbook of Dynamic System Modeling. CRC Press (2007) 36.1–36.27Google Scholar
  2. 2.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academics Publishers (1988)Google Scholar
  3. 3.
    Königsberger, K.: Analysis 2. 2. edn. Springer-Verlag (1997)Google Scholar
  4. 4.
    Aubin, J.P., Cellina, A.: Differential Inclusions. A Series of Comprehensive Studies in Mathematics. Springer-Verlag (1984)Google Scholar
  5. 5.
    Hiebert, K.L., Shampine, L.F.: Implicitly defined output points for solutions of ode’s. Sandia Report SAND80-0180, USA (February 1980)Google Scholar
  6. 6.
    Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. PhD thesis, Bonner Mathematische Schriften Nr. 183, Bonn (1987)Google Scholar
  7. 7.
    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. B. G. Teubner, Stuttgart, Corrected reprint (2002)Google Scholar
  8. 8.
    Pfeiffer, A.: Numerische Sensitivitätsanalyse unstetiger multidisziplinärer Modelle mit Anwendungen in der gradientenbasierten Optimierung. Fortschrittberichte VDI, Reihe 20, Nr. 417, VDI Verlag (2008)Google Scholar
  9. 9.
    Pelchen, C., Schweiger, C., Otter, M.: Modeling and simulating the efficiency of gearboxes and of planetary gearboxes. In: Proceedings of 2nd International Modelica Conference, Oberpfaffenhofen (March 2002) 257–266Google Scholar
  10. 10.
    Li, S., Petzold, L.R.: Design of New Daspk for Sensitivity Analysis. Technical report, Department of Computer Science, University of California Santa Barbara, USA (May 1999)Google Scholar
  11. 11.
    Fritzson, P.: Principles of object-oriented modeling and simulation with Modelica 2.1. IEEE Press, Wiley-Interscience (2004)Google Scholar
  12. 12.
    Rozenvasser, E.N.: General sensitivity equations of discontinuous systems. Automat. Remote Control (1967) 400–404Google Scholar
  13. 13.
    Callies, R.: Entwurfsoptimierung und optimale Steuerung. Differential-algebraische Systeme, Mehrgitter-Mehrzielansätze und numerische Realisierung. Habilitations-schrift, Centre for Mathematics, Technical University Munich (July 2000)Google Scholar
  14. 14.
    Galán, S., Feehery, W.F., Barton, P.I.: Parametric sensitivity functions for hybrid discrete/continuous systems. Applied Numerical Mathematics 31(1) (1999) 17–47MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.DLR OberpfaffenhofenInstitute of Robotics and MechatronicsWesslingGermany
  2. 2.NWF III – Institute of MathematicsMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations