Knowledge Based Query Processing in Large Scale Virtual Organizations

  • Alexandra Pomares
  • Claudia Roncancio
  • José Abásolo
  • María del Pilar Villamil
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 24)

Abstract

This work concerns query processing to support data sharing in large scale Virtual Organizations(VO). Characterization of VO’s data sharing contexts reflects the coexistence of factors like sources overlapping, uncertain data location, and fuzzy copies in dynamic large scale environments that hinder query processing. Existing results on distributed query evaluation are useful for VOs, but there is no appropriate solution combining high semantic level and dynamic large scale environments required by VOs. This paper proposes a characterization of VOs data sources, called Data Profile, and a query processing strategy (called QPro2e) for large scale VOs with complex data profiles. QPro2e uses an evolving distributed knowledge base describing data sources roles w.r.t shared domain concepts. It allows the identification of logical data source clusters which improve query evaluation in presence of a very large number of data sources.

Keywords

Large scale query processing Virtual organizations Ontologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)CrossRefGoogle Scholar
  2. 2.
    NEESGrid: Nees consortium (2008), http://neesgrid.ncsa.uiuc.edu/
  3. 3.
    BIRN: Bioinformatics research network - birn project (2008), http://www.loni.ucla.edu/birn/
  4. 4.
    Venugopal, S., Buyya, R., Ramamohanarao, K.: A taxonomy of data grids for distributed data sharing, management, and processing. ACM Comput. Surv. 38, 3 (2006)CrossRefGoogle Scholar
  5. 5.
    Grethe, J.: et al: Building a national collaboratory to hasten the derivation of new understanding and treatment of disease. Studies in health technology and informatics 112, 100–109 (2005)Google Scholar
  6. 6.
    Chu, X., et al.: A service-oriented grid environment for integration of distributed kidney models and resources. In: Concurrency and Computation:Practice and Experience. Wiley Press, New York (2007)Google Scholar
  7. 7.
    Roth, M., Schwarz, P.: A wrapper architecture for legacy data sources. In: VLDB 1997, pp. 266–275. Morgan Kaufman, San Francisco (1997)Google Scholar
  8. 8.
    Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D., Vassalos, V., Widom, J.: The tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems 8, 117–132 (1997)CrossRefGoogle Scholar
  9. 9.
    Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources: a machine-learning approach. In: SIGMOD 2001, pp. 509–520. ACM Press, New York (2001)CrossRefGoogle Scholar
  10. 10.
    Melnik, S., Garcia-Molina, H., Paepcke, A.: A mediation infrastructure for digital library services. In: DL 2000: Proceedings of the fifth ACM conference on Digital libraries, pp. 123–132. ACM Press, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Bruno, G., Collet, C., Vargas-Solar, G.: Configuring intelligent mediators using ontologies. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 554–572. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32, 422–469 (2000)CrossRefGoogle Scholar
  13. 13.
    Chen, M.S., Yu, P.S.: Combining joint and semi-join operations for distributed query processing. IEEE Trans. on Knowl. and Data Eng. 5, 534–542 (1993)CrossRefGoogle Scholar
  14. 14.
    Wenlong, H., Xiaolin, L., Jixiang, J., Yu, F., Yi, X.: Data model and virtual database engine for grid environment. In: GCC 2007, pp. 823–829. IEEE Computer Society, Washington (2007)Google Scholar
  15. 15.
    Rundensteiner, E.A., Ding, L., Sutherland, T., Zhu, Y., Pielech, B., Mehta, N.: Cape: continuous query engine with heterogeneous-grained adaptivity. In: VLDB 2004, pp. 1353–1356 (2004)Google Scholar
  16. 16.
    Halevy, Y., Ives, G., Suciu, D., Tatarinov, I.: Schema mediation for large-scale semantic data sharing. The VLDB Journal 14, 68–83 (2005)CrossRefGoogle Scholar
  17. 17.
    Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.: Querying the internet with pier. In: VLDB 2003, VLDB Endowment, pp. 321–332 (2003)Google Scholar
  18. 18.
    Villamil, M., Roncancio, C., Labb, C.: Range Queries in Massively Distributed Data. In: Proc. Int’l WS on Grid and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous Distributed Database Systems, Krakow, Poland (2006)Google Scholar
  19. 19.
    Hayek, R., Raschia, G., Valduriez, P., Mouaddib, N.: Summary management in p2p systems. In: EDBT, pp. 16–25 (2008)Google Scholar
  20. 20.
    Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.L., Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project. SIGMOD Rec. 32, 47–52 (2003)CrossRefGoogle Scholar
  21. 21.
    Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M., Risch, T.: Edutella: a p2p networking infrastructure based on rdf. In: WWW 2002, pp. 604–615. ACM, New York (2002)CrossRefGoogle Scholar
  22. 22.
    Horrocks, I.: Owl: A description logic based ontology language. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Eric Prud, A.S.: Sparql query language for rdf (2007), http://www.w3.org/tr/rdf-sparql-query/
  24. 24.
    Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32, 444–458 (1989)CrossRefGoogle Scholar
  25. 25.
    Pomares, A., Roncancio, C., Abásolo, J., Villamil, M.D.P.: Dynamic source selection in large scale mediation systems. In: Hameurlain, A. (ed.) Globe 2008. LNCS, vol. 5187, pp. 58–69. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Pomares, A., Abasolo, J., Roncancio, C.: Virtual objects in large scale health information systems. In: Studies in Health Technology and Informatics, pp. 80–89. IOS Press, Amsterdam (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandra Pomares
    • 1
    • 2
  • Claudia Roncancio
    • 1
  • José Abásolo
    • 2
  • María del Pilar Villamil
    • 2
  1. 1.LIGGrenoble UniversityGrenobleFrance
  2. 2.University of Los AndesBogotáColombia

Personalised recommendations