Advertisement

Are Wikipedia Resources Useful for Discovering Answers to List Questions within Web Snippets?

  • Alejandro Figueroa
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 18)

Abstract

This paper presents LiSnQA, a list question answering system that extracts answers to list queries from the short descriptions of web-sites returned by search engines, called web snippets. LiSnQA mines Wikipedia resources in order to obtain valuable information that assists in the extraction of these answers. The interesting facet of LiSnQA is, that in contrast to current systems, it does not account for lists in Wikipedia, but for its redirections, categories, sandboxes, and first definition sentences. Results show that these resources strengthen the answering process.

Keywords

Web mining Question answering List questions Distinct answers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cederberg, S., Windows, D.: Using LSA and Noun Coordination Information to Improve the Precision and Recall of Automatic Hyponymy Extraction. In: Conference on Natural Language Learning (CoNLL 2003), Edmonton, Canada, pp. 111–118 (2003)Google Scholar
  2. 2.
    Figueroa, A., Neumann, G.: Finding Distinct Answers in Web Snippets. In: WEBIST 2008: 4th International Conference on Web Information Systems and Technologies, Funchal, Madeira - Portugal (2008)Google Scholar
  3. 3.
    Hearst, M.: Automatic Acquisition of Hyponomys from Large Text Corpora. In: Fourteenth International Conference on computational Linguistics, Nantes, France, pp. 539–545 (1992)Google Scholar
  4. 4.
    Katz, B., Lin, J., Loreto, D., Hildebrandt, W., Bilotti, M., Felshin, S., Fernandes, A., Marton, G., Mora, F.: Integrating Web-based and Corpus-based Techniques for Question Answering. In: TREC 2003, Gaithersburg, Maryland, pp. 426–435 (2003)Google Scholar
  5. 5.
    Katz, B., Bilotti, M., Felshin, S., Fernandes, A., Hildebrandt, W., Katzir, R., Lin, J., Loreto, D., Marton, G., Mora, F., Uzuner, O.: Answering multiple questions on a topic from heterogeneous resources. In: TREC 2004, Gaithersburg, Maryland (2004)Google Scholar
  6. 6.
    Katz, B., Marton, G., Borchardt, G., Brownell, A., Felshin, S., Loreto, D., Louis-Rosenberg, J., Lu, B., Mora, F., Stiller, S., Uzuner, O., Wilcox, A.: External Knowledge Sources for Question Answering. In: TREC 2005, Gaithersburg, Maryland (2005)Google Scholar
  7. 7.
    Schone, P., Ciany, G., Cutts, R., Mayfield, J., Smith, T.: QACTIS-based Question Answering at TREC 2005. In: TREC 2005, Gaithersburg, Maryland (2005)Google Scholar
  8. 8.
    Sombatsrisomboon, R., Matsuo, P., Ishizuka, M.: Acquisition of Hypernyms and Hyponyms from the WWW. In: 2nd International Workshop on Active Mining, Maebashi, Japan (2003)Google Scholar
  9. 9.
    Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis, ch. 10, pp. 335–339. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  10. 10.
    Shinzato, K., Torisawa, K.: Acquiring hyponymy relations from web documents. In: HLT-NAACL 2004, Boston, MA, USA, pp. 73–80 (2004)Google Scholar
  11. 11.
    Shinzato, K., Torisawa, K.: Extracting hyponyms of prespecified hypernyms from itemizations and headings in web documents. In: COLING 2004, Geneva, Switzerland, pp. 938–944 (2004)Google Scholar
  12. 12.
    Yang, H., Chua, T.: Effectiveness of Web Page classification on Finding List Answers. In: SIGIR 2004, Sheffield, United Kingdom, pp. 522–523 (2004)Google Scholar
  13. 13.
    Yang, H., Chua, T.: Web-based List Question Answering. In: COLING 2004, Geneva, Switzerland, pp. 1277–1283 (2004)Google Scholar
  14. 14.
    Wu, L., Huang, X., Zhou, Y., Zhang, Z., Lin, F.: FDUQA on TREC 2005 QATrack. In: TREC 2005, Gaithersburg, Maryland (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alejandro Figueroa
    • 1
  1. 1.German Centre for Artificial Intelligence - DFKISaarbrückenGermany

Personalised recommendations