Advertisement

An Instantiation of Hierarchical Distance-Based Conceptual Clustering for Propositional Learning

  • Ana Funes
  • Cesar Ferri
  • Jose Hernández-Orallo
  • Maria José Ramírez-Quintana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5476)

Abstract

In this work we analyse the relationship between distance and generalisation operators for real numbers, nominal data and tuples in the context of hierarchical distance-based conceptual clustering (HDCC). HDCC is a general approach to conceptual clustering that extends the traditional algorithm for hierarchical clustering by producing conceptual generalisations of the discovered clusters. This makes it possible to combine the flexibility of changing distances for several clustering problems and the advantage of having concepts which are crucial for tasks as summarisation and descriptive data mining in general. In this work we propose a set of generalisation operators and distances for the data types mentioned before and we analyse the properties by them satisfied on the basis of three different levels of agreement between the clustering hierarchy obtained from the linkage distance and the hierarchy obtained by using generalisation operators.

Keywords

conceptual clustering hierarchical clustering generalisation distances propositional learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Funes, A., Ferri, C., Hernández-Orallo, J., Ramirez-Quintana, M.J.: Hierarchical Distance-based Conceptual Clustering. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 349–364. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Survey 31(3), 264–323 (1999)CrossRefGoogle Scholar
  3. 3.
    Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Stanfill, A., Waltz, D.: Toward memory-based reasoning. Comm. of the ACM 29, 1213–1228 (1986)CrossRefGoogle Scholar
  5. 5.
    Black, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases (1998)Google Scholar
  6. 6.
    Estruch, V.: Bridging the gap between distance and generalisation: Symbolic learning in metric spaces. PhD thesis, DSIC-UPV (2008), http://www.dsic.upv.es/~vestruch/thesis.pdf
  7. 7.
    Fisher, D.: Knowledge acquisition via incremental conceptual clustering. In: Machine Learning, pp. 139–172 (1987)Google Scholar
  8. 8.
    Michalski, R.S.: Knowledge Acquisition Through Conceptual Clustering: A Theoretical Framework and an Algorithm for Partitioning Data into Conjunctive Concepts. Policy Analysis and Information Systems 4(3), 219–244 (1980)MathSciNetGoogle Scholar
  9. 9.
    Michalski, R.S., Stepp, R.E.: Learning from Observation: Conceptual Clustering. In: Michalski, et al. (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 331–363. TIOGA Publishing Co. (1983)Google Scholar
  10. 10.
    Talavera, L., Béjar, J.: Generality-Based Conceptual Clustering with Probabilistic Concepts. IEEE Transactions on Pattern Analysis & Machine Intelligence 23(2) (2001)Google Scholar
  11. 11.
    Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eurgenics, Part II 7, 179–188 (1936)Google Scholar
  12. 12.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proc. of the 5th Berkeley Sym. on Math. Statistics & Probability, pp. 281–297. Univ. of California Press (1967)Google Scholar
  13. 13.
    Cover, T.M., Hart, P.E.: Nearest neighbour pattern classification. IEEE Trans. Info. Theory IT-13, 21–27 (1967)CrossRefzbMATHGoogle Scholar
  14. 14.
    Funes, A.: Agrupamiento Conceptual Jerárquico Basado en Distancias, Definición e Instanciación para el Caso Proposicional. Master thesis. DSIC-UPV (2008), http://www.dsic.upv.es/~afunes/masterThesis.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ana Funes
    • 1
    • 2
  • Cesar Ferri
    • 1
  • Jose Hernández-Orallo
    • 1
  • Maria José Ramírez-Quintana
    • 1
  1. 1.DSICUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Universidad Nacional de San LuisSan LuisArgentina

Personalised recommendations