Quantifying Asymmetric Semantic Relations from Query Logs by Resource Allocation

  • Zhiyuan Liu
  • Yabin Zheng
  • Maosong Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5476)

Abstract

In this paper we present a bipartite-network-based resource allocation(BNRA) method to extract and quantify semantic relations from large scale query logs of search engine. Firstly, we construct a query-URL bipartite network from query logs of search engine. By BNRA, we extract asymmetric semantic relations between queries from the bipartite network. Asymmetric relation indicates that two related queries could be assigned different semantic relevance strength against each other, which is more conforming to reality. We verify the validity of the method with query logs from Chinese search engine Sogou. It demonstrates BNRA could effectively quantify semantic relations from We further construct query semantic networks, and introduce several measures to analyze the networks. BNRA is not only ‘language oblivious’ and ‘content oblivious’, but could also be easily implemented in a paralleled manner, which provides commercial search engines a feasible solution to handle large scale query logs.

Keywords

Semantic relations query log resource allocation asymmetric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining (2000)Google Scholar
  2. 2.
    Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (2007)Google Scholar
  3. 3.
    Wen, J.R., Jian-Yun, N., Hong-Jiang, Z.: Query clustering using user logs. ACM Transactions on Information Systems 20(1) (2002)Google Scholar
  4. 4.
    Shen, D., Pan, R., Sun, J.T., Pan, J.J., Wu, K., Yin, J., Yang, Q.: Query enrichment for web-query classification. ACM Transactions on Information Systems 24(3), 320–352 (2006)CrossRefGoogle Scholar
  5. 5.
    Beitzel, S.M., Jensen, E.C., Lewis, D.D., Chowdhury, A., Frieder, O.: Automatic classification of web queries using very large unlabeled query logs. ACM Transactions on Information Systems 25(2), 9 (2007)CrossRefGoogle Scholar
  6. 6.
    Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query recommendation using query logs in search engines. In: Workshops on current trends in database technology of 9th international conference on extending database technology (2004)Google Scholar
  7. 7.
    Chirita, P.A., Firan, C.S., Nejdl, W.: Personalized query expansion for the web. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, pp. 7–14 (2007)Google Scholar
  8. 8.
    He, X.F., Yan, J., Ma, J.W., Liu, N., Chen, Z.: Query topic detection for reformulation. In: Proceedings of the 16th international conference on World Wide Web, pp. 1187–1188 (2007)Google Scholar
  9. 9.
    Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Physical Review E 76(4) (2007)Google Scholar
  10. 10.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Transactions on Information Systems 22(1) (2004)Google Scholar
  11. 11.
    Liu, Z.Y., Sun, M.S.: Asymmetrical query recommendation method based on bipartite network resource allocation. In: Proceedings of the 17th international conference on World Wide Web, Beijing (2008)Google Scholar
  12. 12.
    Raghavan, V.V., Sever, H.: On the reuse of past optimal queries. In: Proceedings of the 18th annual international ACM SIGIR conference on research and development in information retrieval, pp. 344–350 (1995)Google Scholar
  13. 13.
    Fitzpatrick, L., Dent, M.: Automatic feedback using past queries: social searching? In: Proceedings of the 20th annual international ACM SIGIR conference on research and development in information retrieval, pp. 306–313 (1997)Google Scholar
  14. 14.
    Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query clustering for boosting web page ranking. In: Advances in Web Intelligence, pp. 164–175 (2004)Google Scholar
  15. 15.
    Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of short text snippets. In: Proceedings of the 15th international conference on World Wide Web, pp. 377–386 (2006)Google Scholar
  16. 16.
    Fonseca, B.M., Golgher, P.B., de Moura, E.S., Ziviani, N.: Using association rules to discover search engines related queries. In: Proceedings of the first conference on Latin American Web Congress, pp. 66–71 (2003)Google Scholar
  17. 17.
    Broder, A.: A taxonomy of web search. ACM SIGIR Forum 36(2), 3–10 (2002)CrossRefMATHGoogle Scholar
  18. 18.
    Kang, I.H., Kim, G.C.: Query type classification for web document retrieval. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval, pp. 64–71 (2003)Google Scholar
  19. 19.
    Gravano, L., Hatzivassiloglou, V., Lichtenstein, R.: Categorizing web queries according to geographical locality. In: Proceedings of the 12th international conference on information and knowledge management, pp. 325–333 (2003)Google Scholar
  20. 20.
    Baeza-Yates, R.: Graphs from search engine queries. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 1–8. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Zhou, T., Jiang, L.L., Su, R.Q., Zhang, Y.C.: Effect of initial configuration on network-based recommendation. Europhysics Letters 81(5), 58004 (2008)CrossRefGoogle Scholar
  22. 22.
    Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, Inc., Orlando (2006)MATHGoogle Scholar
  23. 23.
    Kapp, A.V., Tibshirani, R.: Are clusters found in one dataset present in another dataset? Biostatistics 8(1), 9–31 (2007)CrossRefMATHGoogle Scholar
  24. 24.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zhiyuan Liu
    • 1
  • Yabin Zheng
    • 1
  • Maosong Sun
    • 1
  1. 1.Department of Computer Science and Technology, State Key Lab on Intelligent Technology and Systems, National Lab for Information Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations