Contact Processes and Moment Closure on Adaptive Networks

  • Anne-Ly DoEmail author
  • Thilo Gross
Part of the Understanding Complex Systems book series (UCS)


Contact processes describe the transmission of distinct properties of nodes via the links of a network. They provide a simple framework for many phenomena, such as epidemic spreading and opinion formation. Combining contact processes with rules for topological evolution yields an adaptive network in which the states of the nodes can interact dynamically with the topological degrees of freedom. By moment-closure approximation it is possible to derive low-dimensional systems of ordinary differential equations that describe the dynamics of the adaptive network on a coarse-grained level. In this chapter we discuss the approximation technique itself as well as its applications to adaptive networks. Thus, it can serve both as a tutorial as well as a review of recent results.


Opinion Formation Epidemic Model Social Adjustment Contact Process Giant Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabàsi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 1–54 (2002)CrossRefGoogle Scholar
  2. 2.
    Benczik, I.J., Benczik, S.Z., Schmittmann, B., Zia, R.K.P.: Lack of consensus in social systems. Euro. Phys. Lett. 82 480061–5 (2008)CrossRefGoogle Scholar
  3. 3.
    Durrett, R., Levin, S.A.: Stochastic spatial models: A user’s guide to ecological applications. Philos. T. R. Soc. B 343, 329–50 (1994)CrossRefGoogle Scholar
  4. 4.
    Ehrhardt, G.C.M.A., Marsili, M., Vega-Redondo, F.: Phenomenological models of socio-economic network dynamics. Phys. Rev. E 74, 0361061–11 (2006)CrossRefGoogle Scholar
  5. 5.
    Gargiulo, F., Mazzoni, A.: Can extremism guarantee pluralism? arXiv:0803.3879 (2008)Google Scholar
  6. 6.
    Gil, S., Zanette, D.H.: Coevolution of agents and networks: Opinion spreading and community disconnection. Phys. Lett. A 356, 89–95 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Grabowsi, A., Kosiński, R.A.: Evolution of a social network: The role of cultural diversity. Phys. Rev. E 73, 0161351–7 (2006)Google Scholar
  8. 8.
    Gross, T.: The interplay of network state and topology in epidemic dynamics. In: Boccaletti, S., Latora, V., Moreno, Y. (Eds.) Handbook of Biological Networks. World Scientific, Singapore, to appear in 2009Google Scholar
  9. 9.
    Gross, T., Blasius, B.: Adaptive coevolutionary networks – A review. JRS Interface 5, 259–71 (2008)CrossRefGoogle Scholar
  10. 10.
    Gross, T., Kevrekidis, I.G.: Coarse-graining adaptive coevolutionary network dynamics via automated moment closure. Europhys. Lett. 82, 380041–6 (2008)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gross, T., Dommar D’Lima, C., Blasius B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701–4 (2006)CrossRefGoogle Scholar
  12. 12.
    Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74, 0561081–5 (2007)Google Scholar
  13. 13.
    Keeling, M.J., Rand, D.A., Morris, A.: Dyad models for childhood epidemics. Proc. R. Soc. B 264, 1149–56 (1997)CrossRefGoogle Scholar
  14. 14.
    Kozma, B., Barrat, A.: Consensus formation on adaptive networks. Phys. Rev. E 77, 0161021–10 (2008)CrossRefGoogle Scholar
  15. 15.
    Kozma, B., Barrat, A.: Consensus formation on coevolving networks: groups’ formation and structure. J. Phys. A 41, 2240201–8 (2008)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Nardini, C., Kozma, B., Barrat, A.: Who’s talking first? Consensus or lack thereof in coevolving opinion formation models. Phys. Rev. Lett. 100, 1587011–4 (2008)CrossRefGoogle Scholar
  17. 17.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Parham, P.E., Singh, B.K., Ferguson, N.M.: Analytical approximation of spatial epidemic models of foot and mouth disease. Theor. Popul. Bio. 73, 349–68 (2008)CrossRefGoogle Scholar
  19. 19.
    Peyrard, N., Dieckmann, U., Franc, A.: Long-range correlations improve understanding of the influence of network structure on contact dynamics. Theor. Popul. Bio. 73, 383–94 (2008)Google Scholar
  20. 20.
    Risau-Gusmán , S., Zanette, D.H.: Contact switching as a control strategy for epidemic outbreaks. arXiv:0806.1872 (2008)Google Scholar
  21. 21.
    Shaw, L.B., Schwartz, I.B.: Fluctuating epidemics on adaptive networks. Phys. Rev. E 77, 0661011–10 (2008)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Vazquez, F., Eguíluz, V.M., San Miguel, M.: Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100, 1087021–4 (2008)CrossRefGoogle Scholar
  23. 23.
    Zanette, D.H.: Coevolution of agents and networks in an epidemiological model. arXiv:0707.1249 (2007)Google Scholar
  24. 24.
    Zanette, D.H., Gil, S.: Opinion spreading and agent segregation on evolving networks. Physica D 224, 156–65 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zanette, D.H., Risau-Gusmán , S.: Infection spreading in a population with evolving contacts. J. Biol. Phys. (2008) doi: 10.1007/s1086700890609Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Max-Planck-Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations