Using Enterprise Architecture Models and Bayesian Belief Networks for Failure Impact Analysis

  • Oliver Holschke
  • Per Närman
  • Waldo Rocha Flores
  • Evelina Eriksson
  • Marten Schönherr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5472)


The increasing complexity of enterprise information systems makes it very difficult to prevent local failures from causing ripple effects with serious repercussions to other systems. This paper proposes the use of Enterprise Architecture models coupled with Bayesian Belief Networks to facilitate Failure Impact Analysis. By extending the Enterprise Architecture models with the Bayesian Belief Networks we are able to show not only the architectural components and their interconnections but also the causal influence the availabilities of the architectural elements have on each other. Furthermore, by using the Diagnosis algorithm implemented in the Bayesian Belief Network tool GeNIe, we are able to use the network as a Decision Support System and rank architectural components with their respect to criticality for the functioning of a business process. An example featuring a car rental agency demonstrates the approach.


Enterprise Architecture Management Decision Support Systems SOA Bayesian Belief Nets Diagnosis Failure Impact Analysis 


  1. 1.
    The Open Group: The Open Group Architecture Framework (TOGAF), version 8 Enterprise Edition. The Open Group (2005)Google Scholar
  2. 2.
    Department of Defense Architecture Framework Working Group: DoD Architecture Framework Version 1.0 Department of Defense, USA (2004)Google Scholar
  3. 3.
    Schekkerman, J.: How to survive in the jungle of Enterprise Architecture Frameworks. Trafford, Victoria, Canada (2004)Google Scholar
  4. 4.
    Friedman, N., Linial, M., Nachman, I.: Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology 7, 601–620 (2000)Google Scholar
  5. 5.
    Buckl, S., Ernst, A.M., Lankes, J., Matthes, F.: Enterprise Architecture Management Pattern Catalogue, Version 1.0. Technische Universität München, München (2008)Google Scholar
  6. 6.
    Buuren, R.v., Hoppenbrouwers, S., Jonkers, H., Lankhorst, M., Zanten, G.V.v.: Architecture Language Reference Manual. Telematica Instituut, Radboud Universiteit Nijmegen (2006) Google Scholar
  7. 7.
    Jonkers, H., Lankhorst, M.M., Buuren, R.v., Hoppenbrouwers, S., Bonsangue, M.M., Torre, L.W.N.v.d.: Concepts For Modeling Enterprise Architectures. Int. J. Cooperative Inf. Syst. 13, 257–287 (2004) Google Scholar
  8. 8.
    Lauría, E.J.M., Duchessi, P.: A Bayesian Belief Network for IT implementation decision support. Decision Support Systems 42, 1573–1588 (2006)Google Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience, Hoboken (2000)zbMATHGoogle Scholar
  10. 10.
    Jagt, R.M.: Support for Multiple Cause Diagnosis with Bayesian Networks. Vol. M. Sc. Delft University of Technology, the Netherlands and Information Sciences Department, University of Pittsburgh, PA, USA, Pittsburgh (2002)Google Scholar
  11. 11.
    Decision Systems Laboratory: GeNIe (Graphical Network Interface). vol. 2008, University of Pittsburgh (2008)Google Scholar
  12. 12.
    Tang, A., Nicholson, A.E., Jin, Y., Han, J.: Using Bayesian belief networks for change impact analysis in architecture design. Journal of Systems and Software 80, 127–148 (2007)Google Scholar
  13. 13.
    Neapolitan, R.: Learning Bayesian networks. Prentice-Hall, Inc., Upper Saddle River (2003)Google Scholar
  14. 14.
    Keeney, R.L., Winterfeldt, D.v.: Eliciting Probabilities from Experts in Complex Technical Problems. IEEE Transactions On Engineering Management 38 (1991) Google Scholar
  15. 15.
    Woodberry, O., Nicholson, A.E., Korb, K.B., Pollino, C.: Parameterising Bayesian Networks Australian Conference on Artificial Intelligence. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Holschke, O., Gelpke, P., Offermann, P., Schröpfer, C.: Business Process Improvement by Applying Reference Process Models in SOA - a Scenario-based Analysis. Multikonferenz Wirtschaftsinformatik. GITO-Verlag, Berlin, München, Germany (2008)Google Scholar
  17. 17.
    International Standardization Organization and the International Electrotechnical Committee: ISO/IEC 13236 - Information technology — Quality of service: Framework. ISO/IEC (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Oliver Holschke
    • 1
  • Per Närman
    • 2
  • Waldo Rocha Flores
    • 2
  • Evelina Eriksson
    • 2
  • Marten Schönherr
    • 3
  1. 1.Technische Universität Berlin, Fachgebiet Systemanalyse und EDV, FR 6-7BerlinGermany
  2. 2.Dpt. of Industrial Information and Control SystemsRoyal Institute of Technology (KTH)StockholmSweden
  3. 3.Deutsche Telekom LaboratoriesBerlinGermany

Personalised recommendations