Approaches to Adverse Patient-Ventilator Interactions

  • Ira M. CheifetzEmail author
  • David A. TurnerEmail author


Most mechanical ventilators in neonatal and pediatric intensive care units provide continuous monitoring of respiratory variables as well as a graphical display of gas flow, tidal volume, and airway pressure. Routine analysis of these waveforms is an important aspect of the assessment of patient-ventilator interactions and should be used to optimize mechanical ventilatory support. The ventilator can be titrated using airway graphics and waveforms to improve patient-ventilator synchrony, reduce patient work of breathing, and calculate physiologic parameters related to respiratory mechanics.


Right Ventricle Pulmonary Vascular Resistance Functional Residual Capacity Inspiratory Flow Respiratory Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alía I, Esteban A, Gordo F, Lorente JA, Diaz C, Rodriguez JA, Frutos F (1999) A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest 115(2):453–461PubMedCrossRefGoogle Scholar
  2. Borges JB et al (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174(3):268–278PubMedCrossRefGoogle Scholar
  3. Brower RG et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336PubMedCrossRefGoogle Scholar
  4. Caironi P et al (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181(6):578–586PubMedCrossRefGoogle Scholar
  5. Custer JR, Hales CA (1985) Influence of alveolar oxygen on pulmonary vasoconstriction in newborn lambs versus sheep. Am Rev Respir Dis 132:326–331PubMedGoogle Scholar
  6. Drummond WH, Lock JE (1984) Neonatal ‘pulmonary vasodilator’ drugs. Current status. Dev Pharmacol Ther 7:1–20PubMedGoogle Scholar
  7. Drummond WH, Gregory GA, Heymann MA, Phibbs RA (1981) The independent effects of hyperventilation, tolazoline, and dopamine on infants with persistent pulmonary hypertension. J Pediatr 98:603–611PubMedCrossRefGoogle Scholar
  8. Epstein RA (1971) The sensitivities and response times of ventilatory assistors. Anesthesiology 34:321–326PubMedCrossRefGoogle Scholar
  9. Garson A Jr, Gillette PC (1979) Junctional ectopic tachycardia in children: electrocardiography, electrophysiology and pharmacologic response. Am J Cardiol 44:298–302PubMedCrossRefGoogle Scholar
  10. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333(16):1025–1032PubMedCrossRefGoogle Scholar
  11. Gattinoni L et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354(17):1775–1786PubMedCrossRefGoogle Scholar
  12. Gewillig MH, Lundstrom UR, Deanfield JE, Bull C, Franklin RC, Graham TP Jr, Wyse RK (1990) Impact of Fontan operation on left ventricular size and contractility in tricuspid atresia. Circulation 81:118–127PubMedCrossRefGoogle Scholar
  13. Gibney RT, Wilson RS, Pontoppidan H (1982) Comparison of work of breathing on high gas flow and demand valve continuous positive airway pressure systems. Chest 82:692–695PubMedCrossRefGoogle Scholar
  14. Gillette PC, Kugler JD, Garson A Jr, Gutgesell HP, Duff DF, McNamara DG (1980) Mechanisms of cardiac arrhythmias after the Mustard operation for transposition of the great arteries. Am J Cardiol 45:1225–1230PubMedCrossRefGoogle Scholar
  15. Greenough A, Morley C, Davis J (1983) Interaction of spontaneous respiration with artificial ventilation in preterm babies. J Pediatr 103:769–773PubMedCrossRefGoogle Scholar
  16. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330(24):1717–1722PubMedCrossRefGoogle Scholar
  17. Hemmer M, Suter PM (1979) Treatment of cardiac and renal effects of PEEP with dopamine in patients with acute respiratory failure. Anesthesiology 50:399–403PubMedCrossRefGoogle Scholar
  18. Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24(3):517–524PubMedCrossRefGoogle Scholar
  19. Hickey PR, Hansen DD (1984) Fentanyl- and sufentanil-oxygen -pancuronium anesthesia for cardiac surgery in infants. Anesth Analg 63:117–124PubMedGoogle Scholar
  20. Kavanagh BP et al (2006) Hypercapnia: permissive and therapeutic. Minerva Anestesiol 72:567–576PubMedGoogle Scholar
  21. Koehler RC, Chandra N, Guerci AD, Tsitlik J, Traystman RJ, Rogers MC, Weisfeldt ML (1983) Augmentation of cerebral perfusion by simultaneous chest compression and lung inflation with abdominal binding after cardiac arrest in dogs. Circulation 67:266–275PubMedCrossRefGoogle Scholar
  22. Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161(1):141–146PubMedCrossRefGoogle Scholar
  23. Malik AB, Kidd BS (1973) Independent effects of changes in H+ and CO 2 concentrations on hypoxic pulmonary vasoconstriction. J Appl Physiol 34:318–323PubMedGoogle Scholar
  24. Martin LD, Rafferty JF, Walker LK, Gioia FR (1992) Principles of respiratory support and mechanical ventilation. In: Rogers MC (ed) Textbook of pediatric intensive care. Baltimore, Williams and Wilkens, Baltimore, pp 135–203Google Scholar
  25. Meade MO et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645PubMedCrossRefGoogle Scholar
  26. Mercat A et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655PubMedCrossRefGoogle Scholar
  27. Ni Chonghaile M et al (2005) Permissive hypercapnea: role in protective lung ventilatory strategies. Curr Opin Crit Care 11(1):56–62PubMedCrossRefGoogle Scholar
  28. Peltekova V, Engelberts D, Otulakowski G, Uematsu S, Post M, Kavanagh BP (2010) Hypercapnic acidosis in ventilator-induced lung injury. Intensive Care Med 36(5):869–878PubMedCrossRefGoogle Scholar
  29. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 42:45–55PubMedCrossRefGoogle Scholar
  30. Stark AR, Bascom R, Frantz ID (1979) Muscle relaxation in mechanically ventilated infants. J Pediatr 94:439–443PubMedCrossRefGoogle Scholar
  31. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  32. Tobin MJ, Jubran A, Laghi F (2001) Patient-ventilator interaction. Am J Respir Crit Care Med 163(5):1059–1063PubMedCrossRefGoogle Scholar
  33. Venus B, Jacobs HK, Lim L (1979) Treatment of the adult respiratory distress syndrome with continuous positive airway pressure. Chest 76:257–261PubMedCrossRefGoogle Scholar
  34. Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Pediatric Critical Care Medicine, Pediatric Intensive Care Unit, Pediatric Respiratory Care and ECMODuke Children’s HospitalDurhamUSA
  2. 2.Division of Pediatric Critical Care Medicine, Department of Pediatrics, Pediatric Critical Care Medicine Fellowship ProgramDuke Children’s HospitalDurhamUSA

Personalised recommendations