Advertisement

Setting the Ventilator in the PICU

  • Ira M. CheifetzEmail author
  • David A. Turner
  • Kyle J. Rehder
Chapter

Abstract

The initiation of mechanical ventilation and selection of initial ventilator settings is a complex process that must address the underlying pathophysiology and the change in clinical status which may follow intubation and the implementation of positive pressure breathing. The initial ventilator settings must be instituted to target a patient’s specific clinical indication(s) for mechanical ventilation. Due to the substantial variation in disease processes, no single ventilator strategy can be successfully applied to all patients. The strategy used for a patient with acute respiratory distress syndrome (ARDS) will vary greatly from that for status asthmaticus or a chronic neuromuscular disorder. An additional factor in the approach to mechanical ventilation in the pediatric critical care setting is the tremendous variation in both patient age and size. These considerations are important elements in the development of an approach to mechanical ventilation of the pediatric patient.

Keywords

Right Ventricular Tidal Volume Acute Lung Injury Spontaneous Breathing Right Ventricular Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdelsalam M, Cheifetz IM (2010) Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care 55(11):1483–1490PubMedGoogle Scholar
  2. Alander M, Peltoniemi O, Pokka T, Kontiokari T (2012) Comparison of pressure-, flow-, and NAVA-Triggering in pediatric and neonatal ventilatory care. Pediatr Pulmonol 47(1):76–83PubMedCrossRefGoogle Scholar
  3. Albuali WH, Singh RN, Fraser DD, Seabrook JA, Kavanagh BP, Parshuram CS, Kornecki A (2007) Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med 8(4):324–330PubMedCrossRefGoogle Scholar
  4. Arnold JH et al (2000) High-frequency oscillatory ventilation in pediatric respiratory failure: a multicenter experience. Crit Care Med 28(12):3913–3919PubMedCrossRefGoogle Scholar
  5. Auten RL, Davis JM (2009) Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 66(2):121–127PubMedCrossRefGoogle Scholar
  6. Banner MJ et al (1991) Patient and ventilator work of breathing and ventilatory muscle loads at different levels of pressure support ventilation. Chest 100(2):531–533PubMedCrossRefGoogle Scholar
  7. Barwing J, Ambold M, Linden N, Quintel M, Moerer O (2009) Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med 35(10):1809–1814PubMedCentralPubMedCrossRefGoogle Scholar
  8. Beck J, Campoccia F, Allo JC, Brander L, Brunet F, Slutsky AS et al (2007) Improved synchrony and respiratory unloading by neurally adjusted ventilatory assist (NAVA) in lung-injured rabbits. Pediatr Res 61(3):289–294PubMedCrossRefGoogle Scholar
  9. Bengtsson JA, Edberg KE (2010) Neurally adjusted ventilatory assist in children: an observational study. Pediatr Crit Care Med 11(2):253–257PubMedCrossRefGoogle Scholar
  10. Binda RE Jr, Cook DR, Fischer CG (1976) Advantages of infant ventilators over adapted adult ventilators in pediatrics. Anesth Analg 55:769–772PubMedCrossRefGoogle Scholar
  11. Branson RD, Johannigman JA (2004) What is the evidence base for the newer ventilation modes? Respir Care 49(7):742–760PubMedGoogle Scholar
  12. Bunnell JB (2001) High frequency jet ventilation. Respir Care 46(8):826–828PubMedGoogle Scholar
  13. Campbell RS, Davis BR (2002) Pressure-controlled versus volume-controlled ventilation: does it matter? Respir Care 47(4):416–424PubMedGoogle Scholar
  14. Cannon ML et al (2000) Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the endotracheal tube. Am J Respir Crit Care Med 162(6):2109–2112PubMedCrossRefGoogle Scholar
  15. Carvalho CR, de Paula Pinto Schettino G, Maranhão B, Bethlem EP (1998) Hyperoxia and lung disease. Curr Opin Pulm Med 4(5):300–304PubMedCrossRefGoogle Scholar
  16. Castle RA, Dunne CJ, Mok Q, Wade AM, Stocks J (2002) Accuracy of displayed tidal volume in the pediatric intensive care unit. Crit Care Med 39(11):2566–2574CrossRefGoogle Scholar
  17. Cheifetz IM (2003) Invasive and noninvasive pediatric mechanical ventilation. Respir Care 48(4):442–453; discussion 453–458PubMedGoogle Scholar
  18. Cheifetz IM (2011a) Pediatric acute respiratory distress syndrome. Respir Care 56(10):1589–1599PubMedCrossRefGoogle Scholar
  19. Cheifetz IM (2011b) Management of acute lung injury: applying data from adults to children. Respir Care 56(9):1258–1268; discussion 1268–1272PubMedCrossRefGoogle Scholar
  20. Cheifetz IM, Hamel DS (2006) Is permissive hypoxemia a beneficial strategy for pediatric acute lung injury? Respir Care Clin N Am 12(3):359–369, v–viPubMedGoogle Scholar
  21. Chow LC, Vanderhal A, Raber J, Sola A (2002) Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 34(3):196–202PubMedCrossRefGoogle Scholar
  22. Cinnella G et al (1996) Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation. Am J Respir Crit Care Med 153(3):1025–1033PubMedCrossRefGoogle Scholar
  23. Coisel Y, Chanques G, Jung B, Constantin JM, Capdevila X, Matecki S, Grasso S, Jaber S (2010) Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology 113(4):925–935PubMedCrossRefGoogle Scholar
  24. Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P et al (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 34(11):2010–2018PubMedCrossRefGoogle Scholar
  25. Cools F, Henderson-Smart DJ, Offringa M, Askie LM (2009) Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev 8(3), CD000104Google Scholar
  26. Cournand A, Motley HL, Werko L, Richards DW Jr (1948) Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152:162PubMedGoogle Scholar
  27. Dahlem P, van Aalderen WM, Bos AP (2007) Pediatric acute lung injury. Paediatr Respir Rev 8(4):348–362PubMedCrossRefGoogle Scholar
  28. Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG (1979) Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120:1039–1052PubMedGoogle Scholar
  29. Deal CW, Warden JC, Monk I (1970) Effect of hypothermia on lung compliance. Thorax 25:105–109PubMedCentralPubMedCrossRefGoogle Scholar
  30. Dos Santos CC (2007) Hyperoxic acute lung injury and ventilator-induced/associated lung injury: new insights into intracellular signaling pathways. Crit Care 11(2):126PubMedCentralPubMedCrossRefGoogle Scholar
  31. Duyndam A, Ista E, Houmes RJ, van Driel B, Reiss I, Tibboel D (2011) Invasive ventilation modes in children: a systematic review and meta-analysis. Crit Care 15(1):R24PubMedCentralPubMedCrossRefGoogle Scholar
  32. Epstein RA (1971) The sensitivities and response times of ventilatory assistors. Anesthesiology 34:321–326PubMedCrossRefGoogle Scholar
  33. Fan E, Needham DM, Stewart TE (2005) Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 294(22):2889–2896PubMedCrossRefGoogle Scholar
  34. Frank L, Bucher JR, Roberts RJ (1978) Oxygen toxicity in neonatal and adult animals of various species. J Appl Physiol 45:699–704PubMedGoogle Scholar
  35. Giannouli E (1999) Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Resp Crit Care Med 159(6):1716–1725PubMedCrossRefGoogle Scholar
  36. González M, Arroliga AC, Frutos-Vivar F, Raymondos K, Esteban A, Putensen C, Apezteguía C, Hurtado J, Desmery P, Tomicic V, Elizalde J, Abroug F, Arabi Y, Moreno R, Anzueto A, Ferguson ND (2010) Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med 36(5):817–827PubMedCrossRefGoogle Scholar
  37. Haddad C, Richards CC (1968) Mechanical ventilation of infant: significance and elimination of ventilator compression volume. Anesthesiology 29:365–370PubMedCrossRefGoogle Scholar
  38. Hammon JW Jr, Wolfe WG, Moran JF, Jones RH, Sabiston DC Jr (1976) The effect of positive end-expiratory pressure on regional ventilation and perfusion in the normal and injured primate lung. J Thorac Cardiovasc Surg 72:680–689PubMedGoogle Scholar
  39. Heulitt MJ, Thurman TL, Holt SJ, Jo CH, Simpson P (2009) Reliability of displayed tidal volume in infants and children during dual-controlled ventilation. Pediatr Crit Care Med 10(6):661–667PubMedCrossRefGoogle Scholar
  40. Hofhuis W, Huysman MW, van der Wiel EC, Holland WP, Hop WC, Brinkhorst G, de Jongste JC, Merkus PJ (2002) Worsening of V’maxFRC in infants with chronic lung disease in the first year of life: a more favorable outcome after high-frequency oscillation ventilation. Am J Respir Crit Care Med 166(12 Pt 1):1539–1543PubMedCrossRefGoogle Scholar
  41. Hubble CL, Gentile MA, Tripp DS, Craig DM, Meliones JN, Cheifetz IM (2000) Dead space to total ventilation ratio predicts successful extubation in infants and children. Crit Care Med 28(6):2034–2040PubMedCrossRefGoogle Scholar
  42. Jenkins J, Lynn A, Edmonds J, Barker G (1985) Effects of mechanical ventilation on cardiopulmonary function in children after open-heart surgery. Crit Care Med 13:77–80PubMedCrossRefGoogle Scholar
  43. Kacmarek RM (2011) Proportional assist ventilation and neurally adjusted ventilatory assist. Respir Care 56(2):140–152PubMedCrossRefGoogle Scholar
  44. Kavanagh BP et al (2006) Hypercapnia: permissive and therapeutic. Minerva Anestesiol 72:567–576PubMedGoogle Scholar
  45. Kissoon N, Rimensberger PC, Bohn D (2008) Ventilation strategies and adjunctive therapy in severe lung disease. Pediatr Clin North Am 55(3):709–733, xiiPubMedCrossRefGoogle Scholar
  46. Kondili E, Prinianakis G, Alexopoulou C, Vakouti E, Klimathianaki M, Georgopoulos D (2006) Respiratory load compensation during mechanical ventilation–proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med 32(5):692–699PubMedCrossRefGoogle Scholar
  47. Laffey JG et al (2004) Permissive hypercapnia: role in protective lung ventilatory strategies. Intensive Care Med 30(3):347–356PubMedCrossRefGoogle Scholar
  48. MacIntyre NR (1990) Respiratory monitoring without machinery. Respir Care 35(6):546–556Google Scholar
  49. Martin LD, Rafferty JF, Wetzel RC, Gioia FR (1989) Inspiratory work and response times of a modified pediatric volume ventilator during synchronized intermittent mandatory ventilation and pressure support ventilation. Anesthesiology 71:977–981PubMedCrossRefGoogle Scholar
  50. Maung AA, Schuster KM, Kaplan LJ, Ditillo MF, Piper GL, Maerz LL, Lui FY, Johnson DC, Davis KA (2012) Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients. J Trauma Acute Care Surg 73(2):507–510PubMedCrossRefGoogle Scholar
  51. Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE (2010) A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 69(3):501–510PubMedCrossRefGoogle Scholar
  52. Meliones JN, Bove EL, Dekeon MK, Custer JR, Moler FW, Callow LR, Wilton NC, Rosen DB (1991) High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation 84:III364–III368PubMedGoogle Scholar
  53. Mesiano G, Davis GM (2008) Ventilatory strategies in the neonatal and paediatric intensive care units. Paediatr Respir Rev 9(4):281–288PubMedCrossRefGoogle Scholar
  54. Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y, Pillow JJ (2011) High positive end-expiratory pressure during high-frequency jet ventilation improves oxygenation and ventilation in preterm lambs. Pediatr Res 69(4):319–324PubMedCrossRefGoogle Scholar
  55. Nelson NM (1966) Neonatal pulmonary function. Pediatr Clin North Am 13:769–799PubMedGoogle Scholar
  56. Newth CJ et al (2009) Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med 10(1):1–11PubMedCentralPubMedCrossRefGoogle Scholar
  57. Ortiz G (2010) Outcomes of patients ventilated with synchronized intermittent mandatory ventilation with pressure support: a comparative propensity score study. Chest 137(6):1265–1277PubMedCrossRefGoogle Scholar
  58. Peltekova V et al (2010) Hypercapnic acidosis in ventilator-induced lung injury. Intensive Care Med 36(5):869–878PubMedCrossRefGoogle Scholar
  59. Pontoppidan H, Geffin B, Lowenstein E (1972a) Acute respiratory failure in the adult 1. N Engl J Med 287:690–698PubMedCrossRefGoogle Scholar
  60. Pontoppidan H, Geffin B, Lowenstein E (1972b) Acute respiratory failure in the adult 2. N Engl J Med 287:743–752PubMedCrossRefGoogle Scholar
  61. Pontoppidan H, Geffin B, Lowenstein E (1972c) Acute respiratory failure in the adult 3. N Engl J Med 287:799–806PubMedCrossRefGoogle Scholar
  62. Prodhan P, Noviski N (2004) Pediatric acute hypoxemic respiratory failure: management of oxygenation. J Intensive Care Med 19(3):140–153PubMedCrossRefGoogle Scholar
  63. Putensen C et al (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12(1):13–18PubMedCrossRefGoogle Scholar
  64. Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit R, Meert KL, Luckett PM, Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold JH (2002) Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 288(20):2561–2568PubMedCrossRefGoogle Scholar
  65. Reynolds EO, Taghizadeh A (1974) Improved prognosis of infants mechanically ventilated for hyaline membrane disease. Arch Dis Child 49:505–515PubMedCentralPubMedCrossRefGoogle Scholar
  66. Rimensberger PC (2009) Mechanical ventilation in paediatric intensive care. Ann Fr Anesth Reanim 28(7–8):682–684PubMedCrossRefGoogle Scholar
  67. Rotta AT, Steinhorn DM (2006) Is permissive hypercapnia a beneficial strategy for pediatric acute lung injury? Respir Care Clin N Am 12(3):371–387PubMedGoogle Scholar
  68. Rotta AT, Steinhorn DM (2007) Conventional mechanical ventilation in pediatrics. J Pediatr (Rio J) 83(2 Suppl):S100–S108CrossRefGoogle Scholar
  69. Schmidt M et al (2010) Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology 112(3):670–681PubMedCrossRefGoogle Scholar
  70. Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS (2007) Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest 131(3):711–717PubMedCrossRefGoogle Scholar
  71. Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J et al (2010) Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 38(2):518–526PubMedCrossRefGoogle Scholar
  72. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  73. Terzi N, Pelieu I, Guittet L, Ramakers M, Seguin A, Daubin C et al (2010) Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med 38(9):1830–1837PubMedCrossRefGoogle Scholar
  74. Tobin MJ (1992) Monitoring of pressure, flow, and volume during mechanical ventilation. Respir Care 37:1081–1096PubMedGoogle Scholar
  75. Turner DA, Arnold JH (2007) Insights in pediatric ventilation: timing of intubation, ventilatory strategies, and weaning. Curr Opin Crit Care 13(1):57–63PubMedCrossRefGoogle Scholar
  76. Tyler DC (1983) Positive end-expiratory pressure: a review. Crit Care Med 11:300–308PubMedCrossRefGoogle Scholar
  77. Varelmann D et al (2008) Cardiorespiratory effects of spontaneous breathing in two different models of experimental lung injury: a randomized controlled trial. Crit Care 12(6):R135PubMedCentralPubMedCrossRefGoogle Scholar
  78. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342(18):1301–1308Google Scholar
  79. Vento M, Moro M, Escrig R et al (2009) Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124:e439–e449PubMedCrossRefGoogle Scholar
  80. Vitali SH, Arnold JH (2005) Bench-to-bedside review: ventilator strategies to reduce lung injury – lessons from pediatric and neonatal intensive care. Crit Care 9(2):177–183PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wong PW et al (2000) The effect of varying inspiratory flow waveforms on pulmonary mechanics in critically ill patients. J Crit Care 15(4):133–136PubMedCrossRefGoogle Scholar
  82. Wrigge H, Golisch W, Zinserling J, Sydow M, Almeling G, Burchardi H (1999) Proportional assist versus pressure support ventilation: effects on breathing pattern and respiratory work of patients with chronic obstructive pulmonary disease. Intensive Care Med 25(8):790–798PubMedCrossRefGoogle Scholar
  83. Xirouchaki N, Kondili E, Vaporidi K, Xirouchakis G, Klimathianaki M, Gavriilidis G, Alexandopoulou E, Plataki M, Alexopoulou C, Georgopoulos D (2008) Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 34(11):2026–2034PubMedCrossRefGoogle Scholar
  84. Yee M, Chess PR, McGrath-Morrow SA et al (2009) Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity. Am J Physiol Lung Cell Mol Physiol 297:L641–L649PubMedCentralPubMedCrossRefGoogle Scholar
  85. Younes M (1992) Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Resp Dis 145(1):114–120PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ira M. Cheifetz
    • 1
    Email author
  • David A. Turner
    • 2
  • Kyle J. Rehder
    • 3
  1. 1.Division of Pediatric Critical Care Medicine, Pediatric Intensive Care Unit, Pediatric Respiratory Care and ECMODuke Children’s HospitalDurhamUSA
  2. 2.Division of Pediatric Critical Care Medicine, Department of Pediatrics, Pediatric Critical Care Medicine Fellowship ProgramDuke Children’s HospitalDurhamUSA
  3. 3.Division of Pediatric Critical Care Medicine, Department of PediatricsDuke Children’s Hospital, Duke University Medical CenterDurhamUSA

Personalised recommendations